Menu Close

Find-the-cardano-s-solution-of-the-equation-28x-3-9x-2-1-0-




Question Number 200460 by faysal last updated on 19/Nov/23
Find the cardano′s solution of the   equation 28x^3 −9x^2 +1=0
Findthecardanossolutionoftheequation28x39x2+1=0
Answered by Frix last updated on 19/Nov/23
28x^3 −9x^2 +1=0  x^3 −((9x^2 )/(28))+(1/(28))=0  Before using any other method we try all  factors of ±(1/(28)) ⇒ x_1 =−(1/4). We now have  (x+(1/4))(x^2 −((4x)/7)+(1/7))=0  ⇒ x_(2, 3) =(2/7)±((√3)/7)i  Cardano means more work:  28x^3 −9x^2 +1=0  x^3 −((9x^2 )/(28))+(1/(28))=0  x=t+(3/(28))  t^3 −((27t)/(784))+((365)/(10976))=0 ⇒ p=−((27)/(784))∧q=((365)/(10976))  u=((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3) ∧v=((−(q/2)−(√((q^2 /4)+(p^3 /(27))))))^(1/3)   t_1 =u+v  t_2 =ωu+ω^2 v  t_3 =ω^2 u+ωv  ...
28x39x2+1=0x39x228+128=0Beforeusinganyothermethodwetryallfactorsof±128x1=14.Wenowhave(x+14)(x24x7+17)=0x2,3=27±37iCardanomeansmorework:28x39x2+1=0x39x228+128=0x=t+328t327t784+36510976=0p=27784q=36510976u=q2+q24+p3273v=q2q24+p3273t1=u+vt2=ωu+ω2vt3=ω2u+ωv

Leave a Reply

Your email address will not be published. Required fields are marked *