Question Number 200471 by Mingma last updated on 19/Nov/23
Answered by AST last updated on 19/Nov/23
$$\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}×\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}\Rightarrow\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}=\mathrm{8} \\ $$$$\frac{\left[{CAB}\right]}{\left[{ADB}\right]}=\frac{{CC}_{\mathrm{1}} }{{DC}_{\mathrm{1}} }=\frac{{CD}}{{DC}_{\mathrm{1}} }+\mathrm{1}=\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}+\frac{{CA}_{\mathrm{1}} }{{A}_{\mathrm{1}} {B}}+\mathrm{1}=\mathrm{13} \\ $$$$\Rightarrow\left[{ADB}\right]=\frac{\mathrm{65}}{\mathrm{13}}=\mathrm{5} \\ $$$$\frac{\left[{CDA}\right]}{\left[{CDB}\right]}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\left[{CDA}\right]+\left[{CDB}\right]=\mathrm{3}\left[{CDA}\right]=\mathrm{65}−\mathrm{5} \\ $$$$\Rightarrow\left[{CDA}\right]=\mathrm{20};\frac{\left[{B}_{\mathrm{1}} {CD}\right]}{\left[{B}_{\mathrm{1}} {AD}\right]}=\mathrm{8} \\ $$$$\left[{B}_{\mathrm{1}} {CD}\right]+\left[{B}_{\mathrm{1}} {AD}\right]=\frac{\mathrm{9}\left[{B}_{\mathrm{1}} {CD}\right]}{\mathrm{8}}=\mathrm{20}\Rightarrow\left[{B}_{\mathrm{1}} {CD}\right]=\frac{\mathrm{160}}{\mathrm{9}} \\ $$
Commented by Rupesh123 last updated on 19/Nov/23
Nice solution,sir!
Commented by klipto last updated on 28/Nov/23
160/9
Answered by mr W last updated on 19/Nov/23
$$\overset{\rightarrow} {{AB}}=\boldsymbol{{a}} \\ $$$$\overset{\rightarrow} {{BC}}=\boldsymbol{{b}} \\ $$$$\overset{\rightarrow} {{CA}}=−\boldsymbol{{a}}−\boldsymbol{{b}} \\ $$$$\overset{\rightarrow} {{AA}_{\mathrm{1}} }=\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{{b}} \\ $$$$\overset{\rightarrow} {{CC}_{\mathrm{1}} }=−\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{{a}}−\boldsymbol{{b}} \\ $$$${say}\:{AD}={sAA}_{\mathrm{1}} ={s}\left(\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{{b}}\right) \\ $$$${CD}={tCC}_{\mathrm{1}} ={t}\left(−\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{{a}}−\boldsymbol{{b}}\right) \\ $$$${AD}=\boldsymbol{{a}}+\boldsymbol{{b}}+{CD} \\ $$$${s}\left(\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{{b}}\right)=\boldsymbol{{a}}+\boldsymbol{{b}}+{t}\left(−\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{{a}}−\boldsymbol{{b}}\right) \\ $$$$\left(\mathrm{1}−{s}−\frac{\mathrm{2}{t}}{\mathrm{3}}\right)\boldsymbol{{a}}+\left(\mathrm{1}−\frac{{s}}{\mathrm{5}}−{t}\right)\boldsymbol{{b}}=\mathrm{0} \\ $$$$\mathrm{1}−{s}−\frac{\mathrm{2}{t}}{\mathrm{3}}=\mathrm{0}\:\:\:…\left({i}\right) \\ $$$$\mathrm{1}−\frac{{s}}{\mathrm{5}}−{t}=\mathrm{0}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{s}=\frac{\mathrm{5}}{\mathrm{13}},\:{t}=\frac{\mathrm{12}}{\mathrm{13}} \\ $$$${BD}=−\boldsymbol{{a}}+{AD}=−\boldsymbol{{a}}+\frac{\mathrm{5}}{\mathrm{13}}\left(\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{5}}\boldsymbol{{b}}\right)=−\frac{\mathrm{8}}{\mathrm{13}}\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{13}}\boldsymbol{{b}} \\ $$$${say}\:{BD}={uBB}_{\mathrm{1}} ,\:{CB}_{\mathrm{1}} ={vCA} \\ $$$${v}\left(−\boldsymbol{{a}}−\boldsymbol{{b}}\right)=−\boldsymbol{{b}}+\frac{\mathrm{1}}{{u}}\left(−\frac{\mathrm{8}}{\mathrm{13}}\boldsymbol{{a}}+\frac{\mathrm{1}}{\mathrm{13}}\boldsymbol{{b}}\right) \\ $$$$\left(\frac{\mathrm{8}}{\mathrm{13}{u}}−{v}\right)\boldsymbol{{a}}+\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{13}{u}}−{v}\right)\boldsymbol{{b}}=\mathrm{0} \\ $$$$\frac{\mathrm{8}}{\mathrm{13}{u}}−{v}=\mathrm{0}\:\:\:…\left({iii}\right) \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{13}{u}}−{v}=\mathrm{0}\:\:\:…\left({iv}\right) \\ $$$$\Rightarrow{u}=\frac{\mathrm{9}}{\mathrm{13}},\:{v}=\frac{\mathrm{8}}{\mathrm{9}} \\ $$$$ \\ $$$$\Delta_{{B}_{\mathrm{1}} {CD}} =\left(\mathrm{1}−{u}\right)\Delta_{{B}_{\mathrm{1}} {CB}} =\left(\mathrm{1}−{u}\right){v}\Delta_{{ABC}} \\ $$$$\Delta_{{B}_{\mathrm{1}} {CD}} =\left(\mathrm{1}−\frac{\mathrm{9}}{\mathrm{13}}\right)×\frac{\mathrm{8}}{\mathrm{9}}\Delta_{{ABC}} =\frac{\mathrm{32}}{\mathrm{117}}\Delta_{{ABC}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{32}×\mathrm{65}}{\mathrm{117}}=\frac{\mathrm{160}}{\mathrm{9}}\approx\mathrm{17}.\mathrm{8} \\ $$
Commented by Rupesh123 last updated on 19/Nov/23
Nice solution,sir!
Commented by Anonim_X last updated on 19/Nov/23
$${great}\:{solution} \\ $$
Commented by mr W last updated on 20/Nov/23
$${certainly}\:{we}\:{can}\:{directly}\:{apply}\:{the} \\ $$$${Ceva}'{s}\:{theorem},\:{see}\:{below}.\:{but}\:{here} \\ $$$${i}\:{applied}\:{the}\:{vector}\:{method}. \\ $$
Commented by mr W last updated on 20/Nov/23
Answered by ajfour last updated on 19/Nov/23
$$\bigtriangleup_{\mathrm{0}} =\frac{\mathrm{5}×\mathrm{3}}{\mathrm{2}}\mathrm{sin}\:{B}=\mathrm{6}.\mathrm{5}\:\:\Rightarrow\:\mathrm{sin}\:{B}=\frac{\mathrm{13}}{\mathrm{15}} \\ $$$$ \\ $$$${let}\:\:{D}\left(\mathrm{0},\mathrm{0}\right);\:\:{A}\left(−{a},\mathrm{0}\right);\:\:{C}\left(\mathrm{0},{b}\right) \\ $$$$\:\:{y}_{{B}\mathrm{1}} =−\frac{{b}}{\mathrm{4}}\:\:\: \\ $$$$\mathrm{sin}\:{B}=\frac{\left({b}+\frac{{b}}{\mathrm{4}}\right)}{\mathrm{5}}=\frac{\mathrm{13}}{\mathrm{15}}\:\:\: \\ $$$$\Rightarrow\:\:{b}=\frac{\mathrm{52}}{\mathrm{15}} \\ $$$$\mathrm{cos}\:{B}=\left(\frac{\mathrm{9}+\mathrm{25}−{AC}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}×\mathrm{5}}\right)=\sqrt{\mathrm{1}−\left(\frac{\mathrm{13}}{\mathrm{15}}\right)^{\mathrm{2}} } \\ $$$${AC}^{\mathrm{2}} =\mathrm{34}−\mathrm{2}\sqrt{\mathrm{56}}\:={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${x}_{{C}\mathrm{1}} =\mathrm{0}=\frac{−\mathrm{2}{a}+{x}_{{B}} }{\mathrm{3}}\:\:\Rightarrow\:\:{x}_{{B}} =\mathrm{2}{a} \\ $$$${eq}\:{of}\:{AC}\:\:\:\:\:\:{y}=\frac{{b}}{{a}}{x}+{b} \\ $$$${eq}\:{of}\:{BB}_{\mathrm{1}} \:\:\:\:\:{y}=\left(\frac{{y}_{{B}} }{{x}_{{B}} }\right){x}\:\:\:=−\frac{{b}}{\mathrm{8}{a}}{x} \\ $$$${intersection}\:\:\left({x}_{{B}\mathrm{1}} ,\:{y}_{{B}\mathrm{1}} \right) \\ $$$$\frac{{b}}{{a}}{x}+{b}=−\frac{{b}}{\mathrm{8}{a}}{x} \\ $$$$\Rightarrow\:\:{x}_{{B}\mathrm{1}} =−\frac{\mathrm{8}{a}}{\mathrm{9}}\:\Rightarrow\:\:{y}_{{B}\mathrm{1}} =\frac{{b}}{\mathrm{9}} \\ $$$$\bigtriangleup_{{B}_{\mathrm{1}} {CD}} =\frac{{b}\left(−{x}_{{B}_{\mathrm{1}} } \right)}{\mathrm{2}}=\frac{\mathrm{4}{ab}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}{b}\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} }}{\mathrm{9}} \\ $$$$\:\:\:=\frac{\mathrm{4}}{\mathrm{9}}\left(\frac{\mathrm{52}}{\mathrm{15}}\right)\sqrt{\mathrm{34}−\mathrm{2}\sqrt{\mathrm{56}}−\left(\frac{\mathrm{52}}{\mathrm{15}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\approx\:\mathrm{4}.\mathrm{0809} \\ $$
Commented by mr W last updated on 19/Nov/23
$${i}\:{think}\:{in}\:{the}\:{diagram}\:\mathrm{1},\:\mathrm{2}\:{and}\:\mathrm{1},\:\mathrm{4} \\ $$$${just}\:{mean}\:{the}\:{ratios}\:{are}\:\mathrm{1}:\mathrm{2}\:{and}\:\mathrm{1}:\mathrm{4}. \\ $$
Commented by ajfour last updated on 19/Nov/23
$${oh}!\:{thanks}\:{sir}.\:{dint}\:{dawn}\:{on}\:{me}\:{so}.. \\ $$