Question Number 200498 by mr W last updated on 19/Nov/23
$${solve}\:{for}\:{x}\in{R} \\ $$$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x} \\ $$
Commented by BaliramKumar last updated on 19/Nov/23
$$\mathrm{Q}.\:\mathrm{192958} \\ $$
Commented by mr W last updated on 19/Nov/23
$${reposted}\:{for}\:{alternative}\:{solutions}. \\ $$
Commented by Harnada last updated on 20/Nov/23
$${Q}\mathrm{183839} \\ $$
Answered by cortano12 last updated on 19/Nov/23
$$\:\:\cancel{\underline{\underbrace{\:}}} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Nov/23
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\:={x}………\left({i}\right) \\ $$$$\left({x}−\frac{\mathrm{1}}{{x}}\right)−\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)={x}\left(\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\:\right) \\ $$$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\:=\frac{{x}−\mathrm{1}}{{x}}…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:={x}−\frac{\mathrm{1}}{{x}}+\mathrm{1} \\ $$$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:={y}\:\left({say}\right) \\ $$$$\mathrm{2}{y}={y}^{\mathrm{2}} +\mathrm{1} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$$${x}−\frac{\mathrm{1}}{{x}}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}_{\geqslant\mathrm{0}} =\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Nov/23
$$\:\:\:\:{a}+{b}={x}………\left({i}\right) \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({x}−\frac{\mathrm{1}}{{x}}\right)−\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)={x}−\mathrm{1} \\ $$$${a}−{b}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}+{b}}=\frac{{x}−\mathrm{1}}{{x}}……\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}{a}={x}+\frac{{x}−\mathrm{1}}{{x}}={x}−\frac{\mathrm{1}}{{x}}+\mathrm{1} \\ $$$$\mathrm{2}\left(\underset{{y}} {\underbrace{\sqrt{{x}−\frac{\mathrm{1}}{{x}}}}}\right)={x}−\frac{\mathrm{1}}{{x}}+\mathrm{1} \\ $$$$\mathrm{2}{y}={y}^{\mathrm{2}} +\mathrm{1} \\ $$$$\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:=\mathrm{1} \\ $$$${x}−\frac{\mathrm{1}}{{x}}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}_{\geqslant\mathrm{0}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}\:}{\mathrm{2}} \\ $$
Answered by Frix last updated on 19/Nov/23
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}={u}\wedge\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={v}\:\Rightarrow\:{x}={u}+{v};\:{u},\:{v}\:\geqslant\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{u}+{v}−\frac{\mathrm{1}}{{u}+{v}}={u}^{\mathrm{2}} \:\Rightarrow\:{u}^{\mathrm{3}} +{u}^{\mathrm{2}} \left({v}−\mathrm{1}\right)−\mathrm{2}{uv}−{v}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{1}−\frac{\mathrm{1}}{{u}+{v}}={v}^{\mathrm{2}} \:\Rightarrow\:{u}=\frac{{v}^{\mathrm{3}} −{v}+\mathrm{1}}{\mathrm{1}−{v}^{\mathrm{2}} } \\ $$$$\left(\mathrm{1}\right)\:\frac{\left({v}^{\mathrm{2}} +{v}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{v}^{\mathrm{2}} \right)^{\mathrm{3}} }=\mathrm{0}\:\Rightarrow\:{v}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\:{u}=\mathrm{1} \\ $$$${x}={u}+{v}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 19/Nov/23
Commented by Rasheed.Sindhi last updated on 20/Nov/23
$$\mathbb{G}\boldsymbol{\mathrm{reat}}! \\ $$$$\:\boldsymbol{\mathcal{T}{hanks}}\:\boldsymbol{{sir}}! \\ $$
Commented by mr W last updated on 19/Nov/23
$${x}>\mathrm{0} \\ $$$$\left(\sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} ={x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by Rasheed.Sindhi last updated on 20/Nov/23
$${You}\:{see}\:{geometry}\:{in}\:{algebra} \\ $$$$\boldsymbol{{where}}\:{others}\:{do}\:{not}\:{see}! \\ $$
Commented by Rasheed.Sindhi last updated on 20/Nov/23
$$\mathcal{B}{ut}\:{sir}\:{I}\:{can}'{t}\:{understand}\:{how}\:{is} \\ $$$${the}\:{answer}\:{related}\:{to}\:{the}\:{question}? \\ $$
Commented by manolex last updated on 20/Nov/23
$$ \\ $$$${ingredients}:\:\:\:\:\sqrt{{x}−\frac{\mathrm{1}}{{x}}\:},\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\:,{x}\:\:\:\:\:{product}\:\:\:\:{triangle}\:\:\:\:\mathrm{1},{x},\sqrt{{x}},{h}=\frac{\mathrm{1}}{\:\sqrt{{x}}}\:\:\:\:\:{way}\:{sustentation}\:.{saludos}\:{mr}\:\:{W} \\ $$
Commented by mr W last updated on 20/Nov/23
$${thanks}\:{you}\:{sir}! \\ $$$${to}\:{be}\:{honest},\:{i}\:{have}\:{a}\:{fondness}\:{for} \\ $$$${geometry}.\:{at}\:{first}\:{i}\:{always}\:{try}\:{to}\: \\ $$$${understand}\:{if}\:{there}\:{is}\:{a}\:{geometrical} \\ $$$${meaning}\:{or}\:{interpretation}\:{for}\:{the} \\ $$$${question}.\:{in}\:{this}\:{way}\:{i}\:{have}\:{solved}\: \\ $$$${some}\:{questions}\:{in}\:{this}\:{forum}\:{which} \\ $$$${at}\:{the}\:{first}\:{glance}\:{have}\:{nothing}\:{to}\:{do} \\ $$$${with}\:{geometry}. \\ $$
Commented by mr W last updated on 20/Nov/23
Commented by mr W last updated on 20/Nov/23
$${BD}=\sqrt{\left(\sqrt{{x}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} }=\sqrt{{x}−\frac{\mathrm{1}}{{x}}} \\ $$$${DC}=\sqrt{\mathrm{1}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}} \\ $$$${BC}=\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x}\:\:\:\left({as}\:{given}\right) \\ $$$$\frac{{AB}}{{AC}}=\frac{\sqrt{{x}}}{\mathrm{1}}=\sqrt{{x}}=\frac{{BC}}{{AB}}=\frac{{x}}{\:\sqrt{{x}}}=\sqrt{{x}}=\frac{{AC}}{{AD}}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\:\sqrt{{x}}}}=\sqrt{{x}} \\ $$$$\Rightarrow\Delta{ABC}\:{is}\:{right}−{angled}\:{triangle} \\ $$$$\Rightarrow\left(\sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} ={x}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$
Commented by necx122 last updated on 20/Nov/23
I've always suspected the same that you and Ajfour had a special likeness for geometry because your manner of approach tackling geometry based questions is most often overwhelming.