Menu Close

Question-200569




Question Number 200569 by Rupesh123 last updated on 20/Nov/23
Answered by MM42 last updated on 20/Nov/23
★  e=Σ_(n=0) ^∞  (1/(n!)) ⇒Σ_(n=2) ^∞  (1/(n!))=e−2  (√(x((x((x((√(x...)))^(1/5) ))^(1/4) ))^(1/3) ))=x^(1/2) ×x^(1/6) ×x^(1/(24)) ×...  =x^((1/(2!))+(1/(3!))+(1/(4!))+...) =x^(e−2)   ⇒I=∫ x^(e−2) dx=(x^(e−1) /(e−1))+c  ✓
$$\bigstar\:\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}\:\Rightarrow\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}={e}−\mathrm{2} \\ $$$$\sqrt{{x}\sqrt[{\mathrm{3}}]{{x}\sqrt[{\mathrm{4}}]{{x}\sqrt[{\mathrm{5}}]{\sqrt{{x}…}}}}}={x}^{\frac{\mathrm{1}}{\mathrm{2}}} ×{x}^{\frac{\mathrm{1}}{\mathrm{6}}} ×{x}^{\frac{\mathrm{1}}{\mathrm{24}}} ×… \\ $$$$={x}^{\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+…} ={x}^{{e}−\mathrm{2}} \\ $$$$\Rightarrow{I}=\int\:{x}^{{e}−\mathrm{2}} {dx}=\frac{{x}^{{e}−\mathrm{1}} }{{e}−\mathrm{1}}+{c}\:\:\checkmark \\ $$$$ \\ $$
Commented by Rupesh123 last updated on 20/Nov/23
Nice one, sir!
Commented by MM42 last updated on 20/Nov/23
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$
Commented by Harnada last updated on 21/Nov/23
Q.1
$${Q}.\mathrm{1}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *