Menu Close

Find-all-polynomials-P-x-with-real-coefficients-such-that-for-all-nonzero-real-numbers-x-P-x-P-1-x-P-x-1-x-P-x-1-x-2-




Question Number 200722 by cortano12 last updated on 22/Nov/23
  Find all polynomials P(x) with   real coefficients such that for   all nonzero real numbers x,        P(x)+P((1/x))=((P(x+(1/x))+P(x−(1/x)))/2)
FindallpolynomialsP(x)withrealcoefficientssuchthatforallnonzerorealnumbersx,P(x)+P(1x)=P(x+1x)+P(x1x)2
Commented by Frix last updated on 22/Nov/23
P(x)=ax^2      [∨P(x)=0]
P(x)=ax2[P(x)=0]
Answered by witcher3 last updated on 22/Nov/23
x→^f x−(1/x);  ]0,+∞[→]−∞,+∞[ bijective  p((1/x))+p(x)=(1/2)(p(x+(1/x))+p(−x+(1/x))=(1/2)(p(x+(1/x))+p(x−(1/x)))  ⇒p(x−(1/x))=p(−((1/x)−x))  ⇔∀a∈R since bijectiln of f. p(a)=p(−a)⇒  p(x)=Σ_(k=0) ^n a_k x^(2k) ;p∈R_(2n) [X]  x=e^t ,  p(e^t )+p(e^(−t) )=(1/2)p(2ch(t))+p(2sh(t))  ⇔2p(e^t )+2p(e^(−t) )=p(2ch(t))+p(2sh(t))  ⇔4Σ_(k=0) ^(2n) a_k ch(2kt)=Σ_(k=0) ^(2n) a_k 2^(2k) (ch^(2k) (t)+sh^(2k) (t))  ⇔∀k∈[0,2]  4ch(2kt)=2^(2k) (ch^(2k) (t)+sh^(2k) (t)  k=1 true ,∀k≥2  4ch(2kt)=2^(2k) (ch^(2k) (t)+sh^(2k) (t);t=0  4=2^(2k)  false k≥2  ⇒p(x)=a_0 +a_1 x^2  ;p(1)+p((1/1))=(1/2)(p(2)+p(0))  ⇔2(a_0 +a_1 )=a_0 +2a_1   a_0 =0  p(x)=ax^2  worck unique by construcrion  ;a∈R
xfx1x;]0,+[],+[bijectivep(1x)+p(x)=12(p(x+1x)+p(x+1x)=12(p(x+1x)+p(x1x))p(x1x)=p((1xx))aRsincebijectilnoff.p(a)=p(a)p(x)=nk=0akx2k;pR2n[X]x=et,p(et)+p(et)=12p(2ch(t))+p(2sh(t))2p(et)+2p(et)=p(2ch(t))+p(2sh(t))42nk=0akch(2kt)=2nk=0ak22k(ch2k(t)+sh2k(t))k[0,2]4ch(2kt)=22k(ch2k(t)+sh2k(t)k=1true,k24ch(2kt)=22k(ch2k(t)+sh2k(t);t=04=22kfalsek2p(x)=a0+a1x2;p(1)+p(11)=12(p(2)+p(0))2(a0+a1)=a0+2a1a0=0p(x)=ax2worckuniquebyconstrucrion;aR

Leave a Reply

Your email address will not be published. Required fields are marked *