Menu Close

Question-200747




Question Number 200747 by Rupesh123 last updated on 22/Nov/23
Answered by MM42 last updated on 22/Nov/23
lnx=u⇒∫_1 ^∞  (du/u^2 ) =−(1/u)]_1 ^∞ =1 ✓
$$\left.{lnx}={u}\Rightarrow\int_{\mathrm{1}} ^{\infty} \:\frac{{du}}{{u}^{\mathrm{2}} }\:=−\frac{\mathrm{1}}{{u}}\right]_{\mathrm{1}} ^{\infty} =\mathrm{1}\:\checkmark \\ $$
Commented by esmaeil last updated on 23/Nov/23
=−(1/(lnx))=(1/(−lnx))=(1/(ln(1/x)))]_e ^∞ =^(?????) 1
$$\left.=−\frac{\mathrm{1}}{{lnx}}=\frac{\mathrm{1}}{−{lnx}}=\frac{\mathrm{1}}{{ln}\frac{\mathrm{1}}{{x}}}\underset{{e}} {\overset{\infty} {\right]}}\overset{?????} {=}\mathrm{1} \\ $$
Commented by MM42 last updated on 23/Nov/23
or  −(1/(lnx))]_e ^∞ =−(1/(ln∞))+(1/(lne))=1
$${or} \\ $$$$\left.−\frac{\mathrm{1}}{{lnx}}\right]_{{e}} ^{\infty} =−\frac{\mathrm{1}}{{ln}\infty}+\frac{\mathrm{1}}{{lne}}=\mathrm{1} \\ $$
Commented by MM42 last updated on 23/Nov/23
lnx=u⇒if  x→e⇒u→1  &  x→∞⇒u→∞  ⇒−(1/u)]_1 ^∞  =−(1/∞)+(1/1)=1
$${lnx}={u}\Rightarrow{if}\:\:{x}\rightarrow{e}\Rightarrow{u}\rightarrow\mathrm{1}\:\:\&\:\:{x}\rightarrow\infty\Rightarrow{u}\rightarrow\infty \\ $$$$\left.\Rightarrow−\frac{\mathrm{1}}{{u}}\right]_{\mathrm{1}} ^{\infty} \:=−\frac{\mathrm{1}}{\infty}+\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1}\: \\ $$
Answered by Calculusboy last updated on 28/Nov/23
Solution: let u=Inx    xdu=dx  when x=∞ u=∞  and when x=e  u=1  I=∫_1 ^∞ ((xdu)/(x(u)^2 ))   ⇔  I=∫_1 ^∞ (du/u^2 )  I=−[(1/u)]_1 ^∞ +C  I=−[(1/∞)−(1/1)]  I=−[0−1]  I=1  ∴∫_e ^∞ (1/(x(In(x))^2 ))dx=1
$$\boldsymbol{{Solution}}:\:\boldsymbol{{let}}\:\boldsymbol{{u}}=\boldsymbol{{Inx}}\:\:\:\:\boldsymbol{{xdu}}=\boldsymbol{{dx}} \\ $$$$\boldsymbol{{when}}\:\boldsymbol{{x}}=\infty\:\boldsymbol{{u}}=\infty\:\:\boldsymbol{{and}}\:\boldsymbol{{when}}\:\boldsymbol{{x}}=\boldsymbol{{e}}\:\:\boldsymbol{{u}}=\mathrm{1} \\ $$$$\boldsymbol{{I}}=\int_{\mathrm{1}} ^{\infty} \frac{\boldsymbol{{xdu}}}{\boldsymbol{{x}}\left(\boldsymbol{{u}}\right)^{\mathrm{2}} }\:\:\:\Leftrightarrow\:\:\boldsymbol{{I}}=\int_{\mathrm{1}} ^{\infty} \frac{\boldsymbol{{du}}}{\boldsymbol{{u}}^{\mathrm{2}} } \\ $$$$\boldsymbol{{I}}=−\left[\frac{\mathrm{1}}{\boldsymbol{{u}}}\right]_{\mathrm{1}} ^{\infty} +\boldsymbol{{C}} \\ $$$$\boldsymbol{{I}}=−\left[\frac{\mathrm{1}}{\infty}−\frac{\mathrm{1}}{\mathrm{1}}\right] \\ $$$$\boldsymbol{{I}}=−\left[\mathrm{0}−\mathrm{1}\right] \\ $$$$\boldsymbol{\mathrm{I}}=\mathrm{1} \\ $$$$\therefore\int_{\boldsymbol{{e}}} ^{\infty} \frac{\mathrm{1}}{\boldsymbol{{x}}\left(\boldsymbol{{In}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }\boldsymbol{{dx}}=\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *