Question Number 200778 by sonukgindia last updated on 23/Nov/23
Answered by MM42 last updated on 23/Nov/23
$${if}\:\:{n}=\mathrm{1}\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.={tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{2}}\: \\ $$$${for}\:\:{n}>\mathrm{1} \\ $$$${x}={tanu}\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {u}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {u}\right)^{{n}} }{du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{n}−\mathrm{2}} {xdx}={I}_{\mathrm{2}{n}−\mathrm{2}} \\ $$$${by}\:“{expect}\:\:{for}\:\:{expect}\:'' \\ $$$$\left.\Rightarrow{I}_{\mathrm{2}{n}−\mathrm{2}} ={sinu}×{cos}^{\mathrm{2}{n}−\mathrm{3}} {u}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\left(\mathrm{2}{n}−\mathrm{3}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{n}−\mathrm{4}} {u}×\left(\mathrm{1}−{cos}^{\mathrm{2}} {u}\right){du} \\ $$$$\Rightarrow{I}_{\mathrm{2}{n}−\mathrm{2}} =\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{n}−\mathrm{2}}\:{I}_{\mathrm{2}{n}−\mathrm{4}} =\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{n}−\mathrm{2}}×\frac{\mathrm{2}{n}−\mathrm{5}}{\mathrm{2}{n}−\mathrm{4}}×…×\frac{\mathrm{1}}{\mathrm{2}}{I}_{\mathrm{2}} \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{n}−\mathrm{2}}×\frac{\mathrm{2}{n}−\mathrm{5}}{\mathrm{2}{n}−\mathrm{4}}×…×\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}\:\:\checkmark \\ $$$$ \\ $$