Menu Close

Question-200861




Question Number 200861 by sonukgindia last updated on 25/Nov/23
Answered by Mathspace last updated on 25/Nov/23
J=_(x=t^(1/(10)) ) (1/(10)) ∫_0 ^∞   (5/(1+t))t^((1/(10))−1) dt  =(1/2)∫_0 ^∞  (t^((1/(10))−1) /(1+t))dt=(1/2)×(π/(sin((π/(10)))))  =(π/(2sin((π/(10)))))
$${J}=_{{x}={t}^{\frac{\mathrm{1}}{\mathrm{10}}} } \frac{\mathrm{1}}{\mathrm{10}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{5}}{\mathrm{1}+{t}}{t}^{\frac{\mathrm{1}}{\mathrm{10}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{10}}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$$$=\frac{\pi}{\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *