Question Number 200915 by Rupesh123 last updated on 26/Nov/23
Answered by Frix last updated on 26/Nov/23
$$\mathrm{Assume} \\ $$$$\int\frac{\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} }{{x}^{\frac{\mathrm{8}}{\mathrm{5}}} }{dx}=\frac{{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{{q}}{\mathrm{5}}} }{{x}^{\frac{{r}}{\mathrm{5}}} } \\ $$$${f}'\left({x}\right)=\frac{{d}}{{dx}}\left[\frac{{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{{q}}{\mathrm{5}}} }{{x}^{\frac{{r}}{\mathrm{5}}} }\right]= \\ $$$$\frac{{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{{q}}{\mathrm{5}}−\mathrm{1}} \left(\left({q}−\mathrm{3}{r}\right){x}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{3}{r}\right)}{{x}^{\frac{{r}}{\mathrm{5}}+\mathrm{1}} } \\ $$$$\frac{{q}}{\mathrm{5}}−\mathrm{1}=\frac{\mathrm{4}}{\mathrm{5}}\:\Rightarrow\:{q}=\mathrm{9} \\ $$$$\frac{{r}}{\mathrm{5}}+\mathrm{1}=\frac{\mathrm{8}}{\mathrm{5}}\:\Rightarrow\:{r}=\mathrm{3} \\ $$$$\mathrm{Now}\:{f}'\left({x}\right)=−\frac{\mathrm{3}{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} }{\mathrm{5}{x}^{\frac{\mathrm{8}}{\mathrm{5}}} }\:\Rightarrow\:{p}=−\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$$\int\frac{\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} }{{x}^{\frac{\mathrm{8}}{\mathrm{5}}} }{dx}=−\frac{\mathrm{5}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{9}}{\mathrm{5}}} }{\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }+{C} \\ $$