Menu Close

resoudre-dans-R-3-x-1-3-3-x-1-3-9-x-2-1-3-




Question Number 200886 by essaad last updated on 26/Nov/23
resoudre dans R :    ((3+x))^(1/3)  −((3−x))^(1/3)  =((9−x^2 ))^(1/3)
resoudredansR:3+x33x3=9x23
Answered by Frix last updated on 26/Nov/23
a^(1/3) −b^(1/3) =c^(1/3)   a−b−3a^(1/3) b^(1/3) (a^(1/3) −b^(1/3) )=c  a−b−3a^(1/3) b^(1/3) c^(1/3) =c  27abc=(a−b−c)^3   c=ab  27a^2 b^2 =(a−b−ab)^3   a=3+x∧b=3−x  27(x−3)^2 (x+3)^2 =(x^2 +2x−9)^3   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  No exact solution possible  x≈−8.70670378^★ ∨x≈2.73590400  ^★  only if we use ((−r))^(1/3) =−(r)^(1/3)
a13b13=c13ab3a13b13(a13b13)=cab3a13b13c13=c27abc=(abc)3c=ab27a2b2=(abab)3a=3+xb=3x27(x3)2(x+3)2=(x2+2x9)3x6+6x542x4100x3+621x2+486x2916=0Noexactsolutionpossiblex8.70670378x2.73590400onlyifweuser3=r3
Commented by essaad last updated on 26/Nov/23
thanks sir
thankssir
Answered by Rasheed.Sindhi last updated on 26/Nov/23
Another way  ((3+x))^(1/3)  −((3−x))^(1/3)  −((9−x^2 ))^(1/3)  =0  a=((3+x))^(1/3)  ,b= ((3−x))^(1/3)   , c=((9−x^2 ))^(1/3)   a−b−c=0   determinant (((a^3 −b^3 −c^3 −3abc=(a−b−c)(a^2 +b^2 +c^2 +ab−bc+ca))))    a^3 −b^3 −c^3 −3abc=0  (3+x)−(3−x)−(9−x^2 )−3(((3+x))^(1/3)  )(((3−x))^(1/3)  )(((9−x^2 ))^(1/3)  )=0  x^2 +2x−9=3(((9−x^2 )^2 ))^(1/3)  =0  (x^2 +2x−9)^3 =27(x^2 −9)^2   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  x≈−8.70670377676 , 2.73590400403
Anotherway3+x33x39x23=0a=3+x3,b=3x3,c=9x23abc=0a3b3c33abc=(abc)(a2+b2+c2+abbc+ca)a3b3c33abc=0(3+x)(3x)(9x2)3(3+x3)(3x3)(9x23)=0x2+2x9=3(9x2)23=0(x2+2x9)3=27(x29)2x6+6x542x4100x3+621x2+486x2916=0x8.70670377676,2.73590400403
Answered by mr W last updated on 26/Nov/23
((3+x))^(1/3) −((3−x))^(1/3) =(((3+x)(3−x)))^(1/3)   say u=((3+x))^(1/3) ,v=((3−x))^(1/3)   u−v=uv ⇒v=(u/(1+u))  u^3 +v^3 =6  u^3 +(u^3 /((1+u)^3 ))=6  u^6 +3u^5 +3u^4 −4u^3 −18u^2 −18u−6=0  ⇒u≈−1.787016, 1.790059  ⇒x=u^3 −3≈−8.706704, ≈2.735906
3+x33x3=(3+x)(3x)3sayu=3+x3,v=3x3uv=uvv=u1+uu3+v3=6u3+u3(1+u)3=6u6+3u5+3u44u318u218u6=0u1.787016,1.790059x=u338.706704,2.735906
Answered by Rasheed.Sindhi last updated on 26/Nov/23
((3+x))^(1/3)  −((3−x))^(1/3)  =((9−x^2 ))^(1/3)   Dividing by ((9−x^2 ))^(1/3)  :  (1/( ((3−x))^(1/3)  ))−(1/( ((3+x))^(1/3)  ))=1  a=(1/( ((3−x))^(1/3)  )) , b=(1/( ((3+x))^(1/3)  )) ⇒  a−b−1=0   determinant (((a^3 −b^3 −1−3ab=(a−b−1)_(⇒a^3 −b^3 −1−3ab=0                    ) (a^2 +b^2 +1+ab−b+a))))  (1/( 3−x ))−(1/(3+x))−1−3((1/( ((3−x))^(1/3)  )))((1/( ((3+x))^(1/3)  )))=0  (1/( 3−x ))−(1/(3+x))−1=3((1/( ((3−x))^(1/3)  )))((1/( ((3+x))^(1/3)  )))  ((3+x−3+x−9+x^2 )/(9−x^2 ))=(3/( ((9−x^2 ))^(1/3) ))  x^2 +2x−9=3(9−x^2 )^(2/3)   (x^2 +2x−9)^3 =27(9−x^2 )^2   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  x≈−8.70670377676 , 2.73590400403
3+x33x3=9x23Dividingby9x23:13x313+x3=1a=13x3,b=13+x3ab1=0a3b313ab=(ab1)a3b313ab=0(a2+b2+1+abb+a)13x13+x13(13x3)(13+x3)=013x13+x1=3(13x3)(13+x3)3+x3+x9+x29x2=39x23x2+2x9=3(9x2)2/3(x2+2x9)3=27(9x2)2x6+6x542x4100x3+621x2+486x2916=0x8.70670377676,2.73590400403

Leave a Reply

Your email address will not be published. Required fields are marked *