Question Number 201065 by mr W last updated on 28/Nov/23
Commented by mr W last updated on 28/Nov/23
$${find}\:{the}\:{side}\:{length}\:\boldsymbol{{a}}\:{of}\:{the}\:{square} \\ $$$${in}\:{terms}\:{of}\:\boldsymbol{{r}}. \\ $$
Answered by ajfour last updated on 29/Nov/23
$$\mathrm{2}{r}\mathrm{cos}\:\theta=\frac{{a}}{\mathrm{2}} \\ $$$$\mathrm{2}{r}\mathrm{sin}\:\theta={a}+{p} \\ $$$${p}^{\mathrm{2}} +\left({r}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{ar}={p}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{4}{r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+{a}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\frac{{r}}{{a}}−\frac{\mathrm{1}}{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$${say}\:\:\frac{{r}}{{a}}={t} \\ $$$$\mathrm{4}{t}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}+\left(\mathrm{1}+\sqrt{{t}−\frac{\mathrm{1}}{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}\left({t}−\frac{\mathrm{1}}{\mathrm{4}}\right)\left({t}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\left(\mathrm{1}+\sqrt{{t}−\frac{\mathrm{1}}{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$${say}\:\:{t}−\frac{\mathrm{1}}{\mathrm{4}}={z}^{\mathrm{2}} \\ $$$$\mathrm{4}{z}^{\mathrm{2}} \left({z}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{1}+{z}^{\mathrm{2}} +\mathrm{2}{z} \\ $$$$\mathrm{4}{z}^{\mathrm{4}} +{z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{1}=\mathrm{0} \\ $$$${z}\approx\mathrm{0}.\mathrm{83813} \\ $$$${t}=\frac{\mathrm{1}}{\mathrm{4}}+{z}^{\mathrm{2}} \approx\:\mathrm{0}.\mathrm{95246} \\ $$$${a}=\frac{{r}}{{t}}\approx\:\frac{{r}}{\mathrm{0}.\mathrm{95246}}\:\approx\:\mathrm{1}.\mathrm{0499}{r} \\ $$
Commented by mr W last updated on 29/Nov/23
$${thanks}\:{sir}!\:{excellent}! \\ $$
Answered by Frix last updated on 29/Nov/23
$${r}=\mathrm{1} \\ $$$$\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }=\mathrm{2}{x} \\ $$$$\mathrm{The}\:\mathrm{usual}\:\mathrm{squaring}\:\mathrm{etc}.\:\mathrm{leads}\:\mathrm{to} \\ $$$${x}^{\mathrm{4}} −\frac{{x}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{7}{x}^{\mathrm{2}} }{\mathrm{8}}−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{No}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solution}. \\ $$$${x}\approx.\mathrm{524956679452} \\ $$$${a}=\mathrm{2}{x}\approx\mathrm{1}.\mathrm{0499133589} \\ $$