Menu Close

calculate-n-1-2n-2-n-n-




Question Number 201106 by mnjuly1970 last updated on 29/Nov/23
       calculate ...            Σ_(n=1) ^∞ (( ζ(2n ))/(2^( n) .n)) = ?
calculaten=1ζ(2n)2n.n=?
Answered by witcher3 last updated on 30/Nov/23
ζ(2n)Γ(2n)=∫_0 ^∞ (x^(2n−1) /(e^x −1))dx  S=Σ_(n≥1) ((ζ(2n))/(2^n n))=Σ_(n≥1) (1/(2^n Γ(2n).n))∫_0 ^∞ (x^(2n−1) /(e^x −1))dx  =∫_0 ^∞ (1/x)Σ_(n≥1) [(x^(2n) /((2n)!.2^n ))].(dx/(e^x −1))  =∫_0 ^∞ ((ch((x/( (√2))))−1)/(x(e^x −1)))dx=S  S(a)=∫_0 ^∞ ((ch(ax)−1)/(x(e^x −1)))dx;S(0)=0  s′(a)=∫_0 ^∞ ((sh(ax))/(e^x −1))dx  =∫_0 ^∞ ((e^(ax) −e^(−ax) )/(e^x −1))dx,e^(−x) =t  =∫_0 ^1 ((t^(−a) −t^a )/(1−t))dt=Ψ(a+1)−Ψ(1−a)  =(1/a)−πcot(πa)  s(a)=ln(a)−ln(sin(πa)+c  =ln((a/(sin(πa))))+c  lim_(a→0) s(a)=s(0)=0=ln((1/π))+c⇒c=ln(π)  S(a)=ln(((πa)/(sin(πa))))  S=s((1/( (√2))))=ln((π/( (√2).sin((π/( (√2)))))))
ζ(2n)Γ(2n)=0x2n1ex1dxS=n1ζ(2n)2nn=n112nΓ(2n).n0x2n1ex1dx=01xn1[x2n(2n)!.2n].dxex1=0ch(x2)1x(ex1)dx=SS(a)=0ch(ax)1x(ex1)dx;S(0)=0s(a)=0sh(ax)ex1dx=0eaxeaxex1dx,ex=t=01tata1tdt=Ψ(a+1)Ψ(1a)=1aπcot(πa)s(a)=ln(a)ln(sin(πa)+c=ln(asin(πa))+climsa0(a)=s(0)=0=ln(1π)+cc=ln(π)S(a)=ln(πasin(πa))S=s(12)=ln(π2.sin(π2))
Commented by mnjuly1970 last updated on 01/Dec/23
thanks alot  master  ⋛
thanksalotmaster
Commented by witcher3 last updated on 01/Dec/23
withe pleasur Barak alah fik
withepleasurBarakalahfik

Leave a Reply

Your email address will not be published. Required fields are marked *