Menu Close

Un-k-1-n-1-n-k-show-that-the-sequence-converges-and-determine-the-limit-




Question Number 201070 by Rodier97 last updated on 29/Nov/23
                     Un = Σ_(k=1) ^n  (1/ ((n),(k) ))    show  that the sequence converges and  determine the limit
Un=nk=11(nk)showthatthesequenceconvergesanddeterminethelimit
Answered by Frix last updated on 29/Nov/23
(1/ ((n),(k) ))=((k!(n−k)!)/(n!))  U_n =1+Σ_(k=1) ^(n−1)  ((k!(n−k)!)/(n!)) =1+(1/(n!))Σ_(k=1) ^(n−1)  k!(n−k)!  The greatest summands are those with  k=1, k=n−1. Their sum is (2/n). The next  are k=2, k=n−2. Their sum is (4/(n^2 −n))  k=3, k=n−3 ⇒ ((12)/(n^3 −3n^2 +2n))  ...  (2/n)  (2/n)+(4/(n^2 −n))=((2n+2)/(n^2 −n))  (2/n)+(4/(n^2 −n))+((12)/(n^3 −3n^2 +2n))=((2n^2 −2n+8)/(n^3 −3n^2 +2n))  ...  We end up with ((an^p +...)/(n^(p+1) +...))  lim_(n→∞)  ((an^p +...)/(n^(p+1) +...)) =0  ⇒  lim_(n→∞)  U_n  =1
1(nk)=k!(nk)!n!Un=1+n1k=1k!(nk)!n!=1+1n!n1k=1k!(nk)!Thegreatestsummandsarethosewithk=1,k=n1.Theirsumis2n.Thenextarek=2,k=n2.Theirsumis4n2nk=3,k=n312n33n2+2n2n2n+4n2n=2n+2n2n2n+4n2n+12n33n2+2n=2n22n+8n33n2+2nWeendupwithanp+np+1+limnanp+np+1+=0limnUn=1

Leave a Reply

Your email address will not be published. Required fields are marked *