Menu Close

If-R-x-2-yi-2y-2-zj-xy-2-z-2-k-find-d-2-R-dx-2-d-2-R-dy-2-at-the-point-2-1-2-




Question Number 201140 by Calculusboy last updated on 30/Nov/23
If R_− =x^2 yi_− −2y^2 zj_− +xy^2 z^2 k_− , find ∣(d^2 R/dx^2 )×(d^2 R/dy^2 )∣    at the point (2,1,−2)
$$\boldsymbol{{If}}\:\underset{−} {\boldsymbol{{R}}}=\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}\underset{−} {\boldsymbol{{i}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}\underset{−} {\boldsymbol{{j}}}+\boldsymbol{{xy}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \underset{−} {\boldsymbol{{k}}},\:\boldsymbol{{find}}\:\mid\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dx}}^{\mathrm{2}} }×\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dy}}^{\mathrm{2}} }\mid\:\: \\ $$$$\boldsymbol{{at}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right) \\ $$
Answered by MM42 last updated on 30/Nov/23
16(√(5 ))  ✓
$$\mathrm{16}\sqrt{\mathrm{5}\:}\:\:\checkmark \\ $$
Commented by Calculusboy last updated on 01/Dec/23
please sir,can you show the working
$$\boldsymbol{{please}}\:\boldsymbol{{sir}},\boldsymbol{{can}}\:\boldsymbol{{you}}\:\boldsymbol{{show}}\:\boldsymbol{{the}}\:\boldsymbol{{working}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *