Question Number 201150 by Mingma last updated on 30/Nov/23
Answered by mr W last updated on 02/Dec/23
$${a}={side}\:{length}\:{of}\:{square} \\ $$$$\left(\frac{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{15}^{\mathrm{2}} }{\mathrm{2}{ax}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{20}^{\mathrm{2}} }{\mathrm{2}{ax}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${a}^{\mathrm{4}} +{x}^{\mathrm{4}} −\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)+\frac{\mathrm{15}^{\mathrm{4}} +\mathrm{20}^{\mathrm{4}} }{\mathrm{2}}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right){x}^{\mathrm{2}} +{a}^{\mathrm{4}} −\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right){a}^{\mathrm{2}} +\frac{\mathrm{15}^{\mathrm{4}} +\mathrm{20}^{\mathrm{4}} }{\mathrm{2}}=\mathrm{0} \\ $$$$\frac{\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}\geqslant{x}^{\mathrm{4}} −\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\frac{\mathrm{15}^{\mathrm{4}} +\mathrm{20}^{\mathrm{4}} }{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} −\left(\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\frac{\left(\mathrm{20}^{\mathrm{2}} −\mathrm{15}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}\leqslant\mathrm{0} \\ $$$$\frac{\left(\mathrm{20}−\mathrm{15}\right)^{\mathrm{2}} }{\mathrm{2}}\leqslant{x}^{\mathrm{2}} \leqslant\frac{\left(\mathrm{20}+\mathrm{15}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{20}−\mathrm{15}}{\:\sqrt{\mathrm{2}}}\leqslant{x}\leqslant\frac{\mathrm{20}+\mathrm{15}}{\:\sqrt{\mathrm{2}}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} =\mathrm{625} \\ $$$${for}\:{x},\:{y}\in{N}\:{there}\:{are}\:\mathrm{2}\:{possibilities}: \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{15},\:\mathrm{20}\right)\:{or}\:\left(\mathrm{7},\:\mathrm{24}\right) \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{625}\pm\sqrt{\mathrm{4}{x}^{\mathrm{2}} \left(\mathrm{625}−{x}^{\mathrm{2}} \right)−\mathrm{30625}}\right] \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{\mathrm{625}\pm\mathrm{25}\sqrt{\mathrm{527}}}{\mathrm{2}}\:{or}\:\frac{\mathrm{625}\pm\mathrm{7}\sqrt{\mathrm{1679}}}{\mathrm{2}} \\ $$$${if}\:{we}\:{only}\:{consider}\:{the}\:{cases}\:{that} \\ $$$${the}\:{point}\:{lies}\:{inside}\:{the}\:{square},\:{then} \\ $$$${there}\:{are}\:{two}\:{solutions}: \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{15},\:\mathrm{20}\right)\:{and}\:{the}\:{area}\:{of}\:{the} \\ $$$${square}\:{is}\:\frac{\mathrm{625}+\mathrm{25}\sqrt{\mathrm{527}}}{\mathrm{2}}\:{or} \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{7},\:\mathrm{24}\right)\:{and}\:{the}\:{area}\:{of}\:{the} \\ $$$${square}\:{is}\:\frac{\mathrm{625}+\mathrm{7}\sqrt{\mathrm{1679}}}{\mathrm{2}}. \\ $$
Commented by mr W last updated on 02/Dec/23
Commented by mr W last updated on 02/Dec/23
Commented by Mingma last updated on 05/Dec/23
very elegant solution!
Answered by ajfour last updated on 02/Dec/23