Question Number 201162 by Calculusboy last updated on 01/Dec/23
Answered by Frix last updated on 01/Dec/23
$${x}={y}={z}=\mathrm{1} \\ $$
Answered by Rasheed.Sindhi last updated on 01/Dec/23
$$\begin{cases}{\mathrm{3}^{{x}} +\mathrm{3}^{{y}} +\mathrm{3}^{{z}} =\mathrm{9}…..\left({i}\right)}\\{\mathrm{9}^{{x}} +\mathrm{9}^{{y}} +\mathrm{9}^{{z}} =\mathrm{27}….\left({ii}\right)}\\{{x}^{{z}} +{z}^{{y}} +{y}^{{x}} =\mathrm{3}…..\left({iii}\right)}\end{cases} \\ $$$$\left({i}\right)^{\mathrm{2}} :\:\left(\mathrm{3}^{{x}} +\mathrm{3}^{{y}} +\mathrm{3}^{{z}} \right)^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} \\ $$$$\mathrm{9}^{{x}} +\mathrm{9}^{{y}} +\mathrm{9}^{{z}} +\mathrm{2}.\mathrm{3}^{{x}+{y}} +\mathrm{2}.\mathrm{3}^{{y}+{z}} +\mathrm{2}.\mathrm{3}^{{z}+{x}} =\mathrm{81} \\ $$$$\mathrm{27}+\mathrm{2}\left(\mathrm{3}^{{x}+{y}} +\mathrm{3}^{{y}+{z}} +\mathrm{3}^{{z}+{x}} \right)=\mathrm{81} \\ $$$$\mathrm{2}\left(\mathrm{3}^{{x}+{y}} +\mathrm{3}^{{y}+{z}} +\mathrm{3}^{{z}+{x}} \right)=\mathrm{54} \\ $$$$\mathrm{3}^{{x}+{y}} +\mathrm{3}^{{y}+{z}} +\mathrm{3}^{{z}+{x}} =\mathrm{27} \\ $$$$\mathrm{9}^{\frac{{x}+{y}}{\mathrm{2}}} +\mathrm{9}^{\frac{{y}+{z}}{\mathrm{2}}} +\mathrm{9}^{\frac{{z}+{x}}{\mathrm{2}}} =\mathrm{27} \\ $$$${Comparing}\:{with}\:\left({ii}\right) \\ $$$$\frac{{x}+{y}}{\mathrm{2}}={x}\wedge\frac{{y}+{z}}{\mathrm{2}}={y}\wedge\frac{{z}+{x}}{\mathrm{2}}={z} \\ $$$$−{x}+{y}=\mathrm{0}\:\wedge\:−{y}+{z}=\mathrm{0}\:\wedge\:−{z}+{x}=\mathrm{0} \\ $$$${x}={y}={z} \\ $$$$\left({iii}\right)\Rightarrow{x}^{{x}} +{x}^{{x}} +{x}^{{x}} =\mathrm{3} \\ $$$$\mathrm{3}{x}^{{x}} =\mathrm{3}\Rightarrow{x}^{{x}} =\mathrm{1}\Rightarrow{x}=\mathrm{1} \\ $$$${x}={y}={z}=\mathrm{1}\checkmark \\ $$
Commented by Calculusboy last updated on 01/Dec/23
$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$
Answered by witcher3 last updated on 01/Dec/23
$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \geqslant\mathrm{ab}+\mathrm{bc}+\mathrm{ac}\:\mathrm{cauchy}\:\mathrm{shwartz} \\ $$$$\Rightarrow\mathrm{3}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)\geqslant\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} \:\mathrm{equality}\:\mathrm{if}\:\mathrm{a}=\mathrm{b}=\mathrm{c} \\ $$$$\Rightarrow\mathrm{3}.\mathrm{27}=\mathrm{3}\left(\mathrm{3}^{\mathrm{2x}} +\mathrm{3}^{\mathrm{2y}} +\mathrm{3}^{\mathrm{2z}} \right)\geqslant\left(\mathrm{3}^{\mathrm{x}} +\mathrm{3}^{\mathrm{y}} +\mathrm{3}^{\mathrm{z}} \right)^{\mathrm{2}} =\mathrm{81} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{y}=\mathrm{z} \\ $$$$\mathrm{3rd}\:\mathrm{equation}\Rightarrow\mathrm{3x}^{\mathrm{x}} =\mathrm{3}\Rightarrow\forall\mathrm{x}\in\mathbb{R}\left(\mathrm{x}^{\mathrm{x}} =\mathrm{1}\Leftrightarrow\mathrm{x}=\mathrm{1}\right) \\ $$$$\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{1} \\ $$
Commented by Calculusboy last updated on 01/Dec/23
$$\boldsymbol{{thankd}}\:\boldsymbol{{sir}} \\ $$
Answered by Rasheed.Sindhi last updated on 01/Dec/23
$$\begin{cases}{\mathrm{3}^{{x}} +\mathrm{3}^{{y}} +\mathrm{3}^{{z}} =\mathrm{9}}\\{\mathrm{9}^{{x}} +\mathrm{9}^{{y}} +\mathrm{9}^{{z}} =\mathrm{27}}\\{{x}^{{z}} +{z}^{{y}} +{y}^{{x}} =\mathrm{3}}\end{cases}\: \\ $$$$\begin{cases}{\mathrm{3}^{{x}−\mathrm{1}} +\mathrm{3}^{{y}−\mathrm{1}} +\mathrm{3}^{{z}−\mathrm{1}} =\mathrm{3}}\\{\mathrm{9}^{{x}−\mathrm{1}} +\mathrm{9}^{{y}−\mathrm{1}} +\mathrm{9}^{{z}−\mathrm{1}} =\mathrm{3}}\\{{x}^{{z}} +{z}^{{y}} +{y}^{{x}} =\mathrm{3}}\end{cases}\: \\ $$$$\begin{cases}{\mathrm{3}^{{x}−\mathrm{1}} +\mathrm{3}^{{y}−\mathrm{1}} +\mathrm{3}^{{z}−\mathrm{1}} =\mathrm{3}…..\left({i}\right)}\\{\mathrm{3}^{\mathrm{2}\left({x}−\mathrm{1}\right)} +\mathrm{3}^{\mathrm{2}\left({y}−\mathrm{1}\right)} +\mathrm{3}^{\mathrm{2}\left({z}−\mathrm{1}\right)} =\mathrm{3}…\left({ii}\right)}\\{{x}^{{z}} +{z}^{{y}} +{y}^{{x}} =\mathrm{3}…..\left({iii}\right)}\end{cases}\: \\ $$$${Comparing}\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\mathrm{2}\left({x}−\mathrm{1}\right)={x}−\mathrm{1}\Rightarrow{x}−\mathrm{1}=\mathrm{0}\Rightarrow{x}=\mathrm{1} \\ $$$$\mathrm{2}\left({y}−\mathrm{1}\right)={y}−\mathrm{1}\Rightarrow{y}−\mathrm{1}=\mathrm{0}\Rightarrow{y}=\mathrm{1} \\ $$$$\mathrm{2}\left({z}−\mathrm{1}\right)={z}−\mathrm{1}\Rightarrow{y}−\mathrm{1}=\mathrm{0}\Rightarrow{z}=\mathrm{1} \\ $$
Commented by Rasheed.Sindhi last updated on 01/Dec/23
$${You}\:{can}\:{compare}\:{in}\:{any}\:{way} \\ $$$${for}\:{example} \\ $$$$\begin{cases}{\mathrm{2}\left({x}−\mathrm{1}\right)={y}−\mathrm{1}\Rightarrow\mathrm{2}{x}−{y}=\mathrm{1}}\\{\mathrm{2}\left({x}−\mathrm{1}\right)={z}−\mathrm{1}\Rightarrow\mathrm{2}{x}−{z}=\mathrm{1}}\end{cases}\Rightarrow{y}={z} \\ $$$${By}\:\:{same}\:{arguments} \\ $$$${x}={y}={z} \\ $$$$\left({iii}\right)\Rightarrow{x}^{{x}} +{x}^{{x}} +{x}^{{x}} =\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}^{{x}} =\mathrm{3}\Rightarrow{x}^{{x}} =\mathrm{1}\Rightarrow{x}=\mathrm{1} \\ $$$$\therefore\:{x}={y}={z}=\mathrm{1} \\ $$
Commented by Calculusboy last updated on 01/Dec/23
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$