Menu Close

calculate-1-dx-1-x-3-




Question Number 201266 by Mathspace last updated on 02/Dec/23
calculate ∫_1 ^∞ (dx/( (√(1+x^3 ))))
calculate1dx1+x3
Answered by witcher3 last updated on 03/Dec/23
(1/x^3 )=y  ⇔(1/3)∫_0 ^1 (y^(−(5/6)) /( (√(1+y))))dy  (1+y)^(−(1/2)) =1+Σ_(n≥1) (−(1/2))....(−(1/2)−n+1).(x^n /(n!))  (y^(−(1/6)) /( (√(1+y))))=Σ_(n≥0) ((Γ((1/2)+n)(−y)^n y^(−(5/6)) )/(Γ((1/2))n!))  ⇔(1/3)∫_0 ^1 Σ_(n≥0) ((Γ((1/2)+n))/(Γ((1/2))n!))(−1)^n .y^(−(5/6)+n) dy=(1/3)Σ_(n≥0) (−1)^n ((Γ((1/2)+n))/(Γ((1/2))n!)).(1/(n+(1/6)))  =2Σ_(n≥0) ((((Γ(n+(1/2)))/(Γ((1/2)))).((Γ(n+(1/6)))/(Γ((1/6)))))/((Γ((7/6)+n))/(Γ((7/6)))))(((−1)^n )/(n!))  =2   _2 F_1 ((1/2),(1/6),(7/6),−1)≈1,89
1x3=y1301y561+ydy(1+y)12=1+n1(12).(12n+1).xnn!y161+y=n0Γ(12+n)(y)ny56Γ(12)n!1301n0Γ(12+n)Γ(12)n!(1)n.y56+ndy=13n0(1)nΓ(12+n)Γ(12)n!.1n+16=2n0Γ(n+12)Γ(12).Γ(n+16)Γ(16)Γ(76+n)Γ(76)(1)nn!=22F1(12,16,76,1)1,89
Answered by Calculusboy last updated on 03/Dec/23
Solution: ∫_1 ^∞ (1+x^3 )^(−(1/2)) dx  let x^(−3) +1=t^2     x=(t^2 −1)^(−(1/3))      dx=−(1/3)(t^2 −1)^(−(4/3)) ∙2tdt=−(2/3)(t^2 −1)^(−(4/3)) tdt  when x=∞  t=1  and  when x=1  t=∞  I=∫_∞ ^1  ((−(2/3)(t^2 +1)^(−(4/3)) t dt)/([1+(t^2 −1)^(−1) ]^(1/2) ))   ⇔  I=(2/3)∫_1 ^∞  (((t^2 −1)^(−(4/3)) t dt)/(((t^2 )^(1/2) )/((t^2 −1)^(1/2) )))  I=(2/3)∫_1 ^∞  (dt/((t^2 −1)^(5/6) ))  =1.8947
Solution:1(1+x3)12dxletx3+1=t2x=(t21)13dx=13(t21)432tdt=23(t21)43tdtwhenx=t=1andwhenx=1t=I=123(t2+1)43tdt[1+(t21)1]12I=231(t21)43tdt(t2)12(t21)12I=231dt(t21)56=1.8947

Leave a Reply

Your email address will not be published. Required fields are marked *