Menu Close

Question-201221




Question Number 201221 by Calculusboy last updated on 02/Dec/23
Answered by MM42 last updated on 02/Dec/23
★★★  tan^(−1) a−tan^(−1) b=tan^(−1) (((a−b)/(1+ab)))  ⇒tan^(−1) (((x+1)/(x+2)))−tan^(−1) ((x/(x+2)))=tan^(−1) (((x+2)/(2x^2 +5x+4)))  ⇒lim_(x→∞)  xtan^(−1) (((x+2)/(2x^2 +5x+4)))  =lim_(x→∞)  ((tan^(−1) (((x+2)/(2x^2 +5x+4))))/(1/x)) =^(hop) (1/2) ✓
$$\bigstar\bigstar\bigstar\:\:{tan}^{−\mathrm{1}} {a}−{tan}^{−\mathrm{1}} {b}={tan}^{−\mathrm{1}} \left(\frac{{a}−{b}}{\mathrm{1}+{ab}}\right) \\ $$$$\Rightarrow{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)−{tan}^{−\mathrm{1}} \left(\frac{{x}}{{x}+\mathrm{2}}\right)={tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}}\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\infty} \:{xtan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}}\right) \\ $$$$={lim}_{{x}\rightarrow\infty} \:\frac{{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}}\right)}{\frac{\mathrm{1}}{{x}}}\:\overset{{hop}} {=}\frac{\mathrm{1}}{\mathrm{2}}\:\checkmark \\ $$
Commented by Calculusboy last updated on 02/Dec/23
nice solution sir
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$
Answered by witcher3 last updated on 02/Dec/23
t=(1/(x+2))⇒t→0_+ ;x=((1−2t)/t)  ⇔lim_(t→0) ((1−2t)/t)[tan^(−1) (1−t)−tan^(−1) (1−2t)]  f(z)=tan^(−1) (1−z) over [t,2t]0< t<(1/2)⇒  ∃c∈]t,2t[such That   ⇒f(2t)−f(t)=tf′(c)=((−t)/((1−c)^2 +1))  ⇔g(t)=(t/((1−t)^2 +1))≤tan^(−1) (1−t)−tan^(−1) (1−2t)=(t/((1−c)^2 +1))≤(t/(1+(1−2t)^2 ))=h(t)  lim_(t→0) ((1−2t)/t)g(t)=(1/2)=lim_(t→0) .((1−2t)/t)h(t)=(1/2)  ⇒lim_(t→0) ((1−2t)/t){tan^(−1) (1−t)−tan^(−1) (1−2t)}=(1/2)
$$\mathrm{t}=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{2}}\Rightarrow\mathrm{t}\rightarrow\mathrm{0}_{+} ;\mathrm{x}=\frac{\mathrm{1}−\mathrm{2t}}{\mathrm{t}} \\ $$$$\Leftrightarrow\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{2t}}{\mathrm{t}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2t}\right)\right] \\ $$$$\mathrm{f}\left(\mathrm{z}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{z}\right)\:\mathrm{over}\:\left[\mathrm{t},\mathrm{2t}\right]\mathrm{0}<\:\mathrm{t}<\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow \\ $$$$\left.\exists\mathrm{c}\in\right]\mathrm{t},\mathrm{2t}\left[\mathrm{such}\:\mathrm{That}\:\right. \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{2t}\right)−\mathrm{f}\left(\mathrm{t}\right)=\mathrm{tf}'\left(\mathrm{c}\right)=\frac{−\mathrm{t}}{\left(\mathrm{1}−\mathrm{c}\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Leftrightarrow\mathrm{g}\left(\mathrm{t}\right)=\frac{\mathrm{t}}{\left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{2}} +\mathrm{1}}\leqslant\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2t}\right)=\frac{\mathrm{t}}{\left(\mathrm{1}−\mathrm{c}\right)^{\mathrm{2}} +\mathrm{1}}\leqslant\frac{\mathrm{t}}{\mathrm{1}+\left(\mathrm{1}−\mathrm{2t}\right)^{\mathrm{2}} }=\mathrm{h}\left(\mathrm{t}\right) \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{2t}}{\mathrm{t}}\mathrm{g}\left(\mathrm{t}\right)=\frac{\mathrm{1}}{\mathrm{2}}=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}.\frac{\mathrm{1}−\mathrm{2t}}{\mathrm{t}}\mathrm{h}\left(\mathrm{t}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{2t}}{\mathrm{t}}\left\{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2t}\right)\right\}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Calculusboy last updated on 02/Dec/23
nice solution sir
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *