Question Number 201298 by ajfour last updated on 03/Dec/23

Commented by ajfour last updated on 03/Dec/23

Commented by mr W last updated on 05/Jan/24

Answered by ajfour last updated on 03/Dec/23
![BC=ai BA=c^� =hi+kj BI=rcot (β/2)i+rj BR=rcot (β/2)(((hi+kj)/( (√(h^2 +k^2 ))))) eq. of JC r_J ^� =ai+ λ{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))i−(((rk)/( (√(h^2 +k^2 )))))j} eq. of JA r_J ^� =(hi+kj)+μ{(rcot (β/2)−h)i−kj} r_J ^� =r_J ^� a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2)) =h+μ(rcot (β/2)−h) & ((λr)/( (√(h^2 +k^2 ))))=μ−1 ⇒ a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2)) =h+(1+((λr)/( (√(h^2 +k^2 )))))(rcot (β/2)−h) ⇒ λ=((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a)) IJ=[a+{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))−rcot (β/2)}]i +[{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}(r/( (√(h^2 +k^2 ))))−r]j h=ccos β and k=csin β ⇒ IJ=[a+{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}{(a−rcos βcot (β/2))−rcot (β/2)}]i +[{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}(r/c)−r]j r=((2△)/(a+b+c))](https://www.tinkutara.com/question/Q201301.png)
Commented by mr W last updated on 04/Dec/23
