Menu Close

Question-201298




Question Number 201298 by ajfour last updated on 03/Dec/23
Commented by ajfour last updated on 03/Dec/23
Find IJ   in terms of a,b,c.
FindIJintermsofa,b,c.
Commented by mr W last updated on 05/Jan/24
IJ=r(√(1−((3p^2 )/((4R+r)^2 ))))  see Q202925
IJ=r13p2(4R+r)2seeQ202925
Answered by ajfour last updated on 03/Dec/23
BC=ai  BA=c^� =hi+kj  BI=rcot (β/2)i+rj  BR=rcot (β/2)(((hi+kj)/( (√(h^2 +k^2 )))))  eq. of JC  r_J ^� =ai+  λ{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))i−(((rk)/( (√(h^2 +k^2 )))))j}  eq. of JA  r_J ^� =(hi+kj)+μ{(rcot (β/2)−h)i−kj}  r_J ^� =r_J ^�   a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))    =h+μ(rcot (β/2)−h)  &  ((λr)/( (√(h^2 +k^2 ))))=μ−1  ⇒ a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))      =h+(1+((λr)/( (√(h^2 +k^2 )))))(rcot (β/2)−h)  ⇒ λ=((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))  IJ=[a+{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))−rcot (β/2)}]i      +[{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}(r/( (√(h^2 +k^2 ))))−r]j  h=ccos β    and   k=csin β  ⇒  IJ=[a+{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}{(a−rcos βcot (β/2))−rcot (β/2)}]i      +[{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}(r/c)−r]j  r=((2△)/(a+b+c))
BC=aiBA=c¯=hi+kjBI=rcotβ2i+rjBR=rcotβ2(hi+kjh2+k2)eq.ofJCr¯J=ai+λ{(arhh2+k2cotβ2)i(rkh2+k2)j}eq.ofJAr¯J=(hi+kj)+μ{(rcotβ2h)ikj}r¯J=r¯Ja+λ(arhh2+k2cotβ2)=h+μ(rcotβ2h)&λrh2+k2=μ1a+λ(arhh2+k2cotβ2)=h+(1+λrh2+k2)(rcotβ2h)λ=ah(rcotβ2h)r2h2+k2cotβ2aIJ=[a+{ah(rcotβ2h)r2h2+k2cotβ2a}{(arhh2+k2cotβ2)rcotβ2}]i+[{ah(rcotβ2h)r2h2+k2cotβ2a}rh2+k2r]jh=ccosβandk=csinβIJ=[a+{accosβ(rcotβ2ccosβ)r2ccotβ2a}{(arcosβcotβ2)rcotβ2}]i+[{accosβ(rcotβ2ccosβ)r2ccotβ2a}rcr]jr=2a+b+c
Commented by mr W last updated on 04/Dec/23
very nice!
verynice!

Leave a Reply

Your email address will not be published. Required fields are marked *