Menu Close

2023-2023-mod-13-




Question Number 201352 by cortano12 last updated on 05/Dec/23
   2023^(2023)  = ... (mod 13)
20232023=(mod13)
Answered by Rasheed.Sindhi last updated on 05/Dec/23
   2023^(2023)  ≡ ... (mod 13)  2023^(2023)        ≡8^(2023) ≡x(mod 13)      [∵ 2023≡8(mod 13)]  ∵8^4 ≡1(mod 13  ∴ 8^(2023) =(8^4 )^(505) (8^3 )≡8^3 ≡5(mod 13)
20232023(mod13)2023202382023x(mod13)[20238(mod13)]841(mod1382023=(84)505(83)835(mod13)
Answered by mr W last updated on 05/Dec/23
2023^(2023)  mod 13  =(155×13+8)^(2023)  mod 13  ≡8^(2023)  mod 13  =8×(64)^(1011)  mod 13  =8×(5×13−1)^(1011)  mod 13  ≡−8 mod 13  ≡5 mod 13
20232023mod13=(155×13+8)2023mod1382023mod13=8×(64)1011mod13=8×(5×131)1011mod138mod135mod13
Answered by BaliramKumar last updated on 05/Dec/23
2023^(2023)  = x (mod13)              [φ(13)= 12]  (13×155+8)^((12×168+7))  = x(mod13)  (8)^((7))  = x(mod13)  (8^2 )^3 ×8^1  = x(mod13)  (64)^3 ×8^1  = x(mod13)  (−1)^3 ×8^1  = x(mod13)  −8 = x(mod13)  1×13−8 = x(mod13)  5 = 5(mod13)  x = 5
20232023=x(mod13)[ϕ(13)=12](13×155+8)(12×168+7)=x(mod13)(8)(7)=x(mod13)(82)3×81=x(mod13)(64)3×81=x(mod13)(1)3×81=x(mod13)8=x(mod13)1×138=x(mod13)5=5(mod13)x=5

Leave a Reply

Your email address will not be published. Required fields are marked *