2023-2023-mod-13- Tinku Tara December 5, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 201352 by cortano12 last updated on 05/Dec/23 20232023=…(mod13) Answered by Rasheed.Sindhi last updated on 05/Dec/23 20232023≡…(mod13)20232023≡82023≡x(mod13)[∵2023≡8(mod13)]∵84≡1(mod13∴82023=(84)505(83)≡83≡5(mod13) Answered by mr W last updated on 05/Dec/23 20232023mod13=(155×13+8)2023mod13≡82023mod13=8×(64)1011mod13=8×(5×13−1)1011mod13≡−8mod13≡5mod13 Answered by BaliramKumar last updated on 05/Dec/23 20232023=x(mod13)[ϕ(13)=12](13×155+8)(12×168+7)=x(mod13)(8)(7)=x(mod13)(82)3×81=x(mod13)(64)3×81=x(mod13)(−1)3×81=x(mod13)−8=x(mod13)1×13−8=x(mod13)5=5(mod13)x=5 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-201353Next Next post: Question-201357 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.