Menu Close

by-diffention-find-f-z-of-f-z-z-1-3-




Question Number 201393 by mokys last updated on 05/Dec/23
by diffention find f ′(z) of f(z) = (z)^(1/3)
bydiffentionfindf(z)off(z)=z3
Commented by mokys last updated on 05/Dec/23
how can solve this
howcansolvethis
Answered by aleks041103 last updated on 05/Dec/23
this is trivial  f(z)=(z)^(1/3) =z^(1/3)   f ′(z)=lim_(h→0) ((f(z+h)−f(z))/h)=  =lim_(h→0)  (((z+h)^(1/3) −z^(1/3) )/h)=  =lim_(h→0)  ((e^(ln(z+h)/3) −e^(ln(z)/3) )/h)=  =e^(ln(z)/3) lim_(h→0)  ((e^(ln(1+h/z)/3) −1)/h)=  =z^(1/3) lim_(h→0)  ((e^((h/z+o(h/z))/3) −1)/h)=  =z^(1/3) lim_(h→0)  (((1+(h/(3z))+o((h/z))+o((h/(3z))+o((h/(3z)))))−1)/h)=  =z^(1/3) lim_(h→0)  ((1/(3z))+(1/z) ((o(h/z))/(h/z)))=  (iff z≠0) =(z^(1/3) /(3z))+(z^(1/3) /z)lim_(g→0) ((o(g))/g)=  =(1/3)z^(−2/3)   ⇒f ′(z)= { (((1/(3(z^2 )^(1/3) )), z≠0)),((undeff., z=0)) :}
thisistrivialf(z)=z3=z1/3f(z)=limh0f(z+h)f(z)h==limh0(z+h)1/3z1/3h==limh0eln(z+h)/3eln(z)/3h==eln(z)/3limh0eln(1+h/z)/31h==z1/3limh0eh/z+o(h/z)31h==z1/3limh0(1+h3z+o(hz)+o(h3z+o(h3z)))1h==z1/3limh0(13z+1zo(h/z)h/z)=(iffz0)=z1/33z+z1/3zlimg0o(g)g==13z2/3f(z)={13z23,z0undeff.,z=0

Leave a Reply

Your email address will not be published. Required fields are marked *