Question Number 201393 by mokys last updated on 05/Dec/23
$${by}\:{diffention}\:{find}\:{f}\:'\left({z}\right)\:{of}\:{f}\left({z}\right)\:=\:\sqrt[{\mathrm{3}}]{{z}} \\ $$
Commented by mokys last updated on 05/Dec/23
$${how}\:{can}\:{solve}\:{this} \\ $$
Answered by aleks041103 last updated on 05/Dec/23
$${this}\:{is}\:{trivial} \\ $$$${f}\left({z}\right)=\sqrt[{\mathrm{3}}]{{z}}={z}^{\mathrm{1}/\mathrm{3}} \\ $$$${f}\:'\left({z}\right)=\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left({z}+{h}\right)−{f}\left({z}\right)}{{h}}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\frac{\left({z}+{h}\right)^{\mathrm{1}/\mathrm{3}} −{z}^{\mathrm{1}/\mathrm{3}} }{{h}}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\frac{{e}^{{ln}\left({z}+{h}\right)/\mathrm{3}} −{e}^{{ln}\left({z}\right)/\mathrm{3}} }{{h}}= \\ $$$$={e}^{{ln}\left({z}\right)/\mathrm{3}} \underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\frac{{e}^{{ln}\left(\mathrm{1}+{h}/{z}\right)/\mathrm{3}} −\mathrm{1}}{{h}}= \\ $$$$={z}^{\mathrm{1}/\mathrm{3}} \underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\frac{{e}^{\frac{{h}/{z}+{o}\left({h}/{z}\right)}{\mathrm{3}}} −\mathrm{1}}{{h}}= \\ $$$$={z}^{\mathrm{1}/\mathrm{3}} \underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\frac{\left(\mathrm{1}+\frac{{h}}{\mathrm{3}{z}}+{o}\left(\frac{{h}}{{z}}\right)+{o}\left(\frac{{h}}{\mathrm{3}{z}}+{o}\left(\frac{{h}}{\mathrm{3}{z}}\right)\right)\right)−\mathrm{1}}{{h}}= \\ $$$$={z}^{\mathrm{1}/\mathrm{3}} \underset{{h}\rightarrow\mathrm{0}} {{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{3}{z}}+\frac{\mathrm{1}}{{z}}\:\frac{{o}\left({h}/{z}\right)}{{h}/{z}}\right)= \\ $$$$\left({iff}\:{z}\neq\mathrm{0}\right)\:=\frac{{z}^{\mathrm{1}/\mathrm{3}} }{\mathrm{3}{z}}+\frac{{z}^{\mathrm{1}/\mathrm{3}} }{{z}}\underset{{g}\rightarrow\mathrm{0}} {{lim}}\frac{{o}\left({g}\right)}{{g}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{z}^{−\mathrm{2}/\mathrm{3}} \\ $$$$\Rightarrow{f}\:'\left({z}\right)=\begin{cases}{\frac{\mathrm{1}}{\mathrm{3}\sqrt[{\mathrm{3}}]{{z}^{\mathrm{2}} }},\:{z}\neq\mathrm{0}}\\{{undeff}.,\:{z}=\mathrm{0}}\end{cases} \\ $$$$ \\ $$