Menu Close

if-a-gt-0-and-m-0-0-cos-mx-x-2-a-2-2-dx-




Question Number 201341 by mathlove last updated on 05/Dec/23
if a>0  and  m≥0  ∫_0 ^∞ ((cos(mx))/((x^2 +a^2 )^2 ))dx=?
ifa>0andm00cos(mx)(x2+a2)2dx=?
Answered by Calculusboy last updated on 05/Dec/23
Solution: since a>0 and m>_− 0   let a=1 and m=0  I=∫_0 ^∞  ((cos(0×x))/((x^2 +1)^2 ))dx   ⇔  I=∫_0 ^∞  (1/((x^2 +1)^2 ))dx   let x=tan𝛉   dx=sec^2 𝛉d𝛉  when  x=∞  𝛉=(𝛑/2)  and when x=0  𝛉=0  I=∫_0 ^(𝛑/2)  ((sec^2 𝛉d𝛉)/((tan^2 𝛉+1)^2 ))  ⇔  I=∫_0 ^(𝛑/2)  ((sec^2 𝛉d𝛉)/((sec^2 𝛉)^2 ))  I=∫_0 ^(𝛑/2)  ((sec^2 𝛉)/(sec^4 𝛉)) d𝛉   ⇔   I=∫_0 ^(𝛑/2)  (1/(sec^2 𝛉))d𝛉  I=∫_0 ^(𝛑/2)  cos^2 𝛉 d𝛉  by using wallis formula(the power is even)  I_n =((n−1)/n)×(𝛑/2)  (n=2)  I=((2−1)/2)×(𝛑/2)  I=(𝛑/4)
Solution:sincea>0andm>0leta=1andm=0I=0cos(0×x)(x2+1)2dxI=01(x2+1)2dxletx=tanθdx=sec2θdθwhenx=θ=π2andwhenx=0θ=0I=0π2sec2θdθ(tan2θ+1)2I=0π2sec2θdθ(sec2θ)2I=0π2sec2θsec4θdθI=0π21sec2θdθI=0π2cos2θdθbyusingwallisformula(thepoweriseven)In=n1n×π2(n=2)I=212×π2I=π4
Commented by mathlove last updated on 05/Dec/23
thanks
thanks
Answered by Mathspace last updated on 05/Dec/23
f(a)=∫_0 ^∞  ((cos(mx))/(x^2 +a^2 ))dx  f^′ (a)=−2a∫_0 ^∞ ((cos(mx))/((x^2 +a^2 )^2 ))dx ⇒  ∫_0 ^∞  ((cos(mx))/((x^2 +a^2 )^2 ))dx=−(1/(2a))f^′ (a)  but f(a)=Re((1/2)∫_R  (e^(imx) /(x^2 +a^2 ))dx)  f(z)=(e^(imz) /(z^2 +a^2 ))=(e^(imz) /((z−ia)(z+ia)))  the poles of f are ia and −ia  ∫_R f(z)dz=2iπΣ_(ai ∈p^+ ) Resa_i   =2iπRes(f,ia)  =2iπ.(e^(im(ia)) /(2ia))=(π/a)e^(−ma)  ⇒f(a)=(π/(2a))e^(−ma)   and f^′ (a)=−(π/(2a^2 ))e^(−ma) −((mπ)/a)e^(−ma)   finally ∫_0 ^∞  ((cos(mx))/((x^2 +a^2 )))dx  =−(1/(2a)){−(π/a^2 )−((mπ)/a)}e^(−ma)   =((π/(2a^3 ))+((ma)/(2a^2 )))e^(−ma)
f(a)=0cos(mx)x2+a2dxf(a)=2a0cos(mx)(x2+a2)2dx0cos(mx)(x2+a2)2dx=12af(a)butf(a)=Re(12Reimxx2+a2dx)f(z)=eimzz2+a2=eimz(zia)(z+ia)thepolesoffareiaandiaRf(z)dz=2iπaip+Resai=2iπRes(f,ia)=2iπ.eim(ia)2ia=πaemaf(a)=π2aemaandf(a)=π2a2emamπaemafinally0cos(mx)(x2+a2)dx=12a{πa2mπa}ema=(π2a3+ma2a2)ema
Commented by Mathspace last updated on 05/Dec/23
sorry ∫_0 ^∞  ((cos(mx))/((x^2 +a^2 )^2 ))dx  =−(1/(2a)){−(π/(2a^2 ))e^(−ma) −((mπ)/(2a))}e^(−ma)   =((π/(4a^3 ))+((mπ)/(4a^2 )))e^(−ma)   =(π/(4a^3 ))(1+am)e^(−ma)
sorry0cos(mx)(x2+a2)2dx=12a{π2a2emamπ2a}ema=(π4a3+mπ4a2)ema=π4a3(1+am)ema

Leave a Reply

Your email address will not be published. Required fields are marked *