Menu Close

2025-2025-x-mod-17-




Question Number 201418 by cortano12 last updated on 06/Dec/23
      2025^(2025)  = x (mod 17 )
20252025=x(mod17)
Answered by mr W last updated on 06/Dec/23
2025^(2025)  (mod 17)  =(119×17+2)^(2025)  (mod 17)  ≡2^(2025)  (mod 17)  =2×2^(4×506)  (mod 17)  =2×(17−1)^(506)  (mod 17)  ≡2×(−1)^(506)  (mod 17)  ≡2 (mod 17)
20252025(mod17)=(119×17+2)2025(mod17)22025(mod17)=2×24×506(mod17)=2×(171)506(mod17)2×(1)506(mod17)2(mod17)
Answered by BaliramKumar last updated on 06/Dec/23
((2025^(2025) )/(17))            [ φ(17)= 16 ]   (((17×119+2)^(16×126+9) )/(17))    (2^9 /(17)) = (((2^4 )^2 ×2^1 )/(17)) =  (((16)^2 ×2)/(17))    (((17−1)^2 ×2)/(17)) = (((−1)^2 ×2)/(17))   ((1×2)/(17)) = (2/(17)) = 2
2025202517[ϕ(17)=16](17×119+2)16×126+9172917=(24)2×2117=(16)2×217(171)2×217=(1)2×2171×217=217=2

Leave a Reply

Your email address will not be published. Required fields are marked *