Menu Close

Let-f-x-and-g-x-be-given-by-f-x-1-x-1-x-2-1-x-4-1-x-2018-and-g-x-1-x-1-1-x-3-1-x-5-1-x-2017-Prove-that-f-x-g-x-gt-2-for-any-non-in




Question Number 201441 by dimentri last updated on 06/Dec/23
Let f(x) and g(x) be given by    f(x)= (1/x) +(1/(x−2)) +(1/(x−4)) + ... +(1/(x−2018))   and     g(x)=(1/(x−1)) +(1/(x−3)) +(1/(x−5)) +...+ (1/(x−2017)).    Prove that  ∣ f(x)−g(x)∣ >2    for any non−integer real number    x satisfying 0<x<2018.
Letf(x)andg(x)begivenbyf(x)=1x+1x2+1x4++1x2018andg(x)=1x1+1x3+1x5++1x2017.Provethatf(x)g(x)>2foranynonintegerrealnumberxsatisfying0<x<2018.
Answered by Rasheed.Sindhi last updated on 06/Dec/23
∣ f(x)−g(x) ∣=  ∣ (((−1)^(1+1) )/(x+1−1))+(((−1)^(2+1) )/(x+1−2))+(((−1)^(3+1) )/(x+1−3))+...+(((−1)^(2018+1) )/(x+1−2018))+(((−1)^(2019+1) )/(x+1−2019)) ∣  =∣ Σ_(n=1) ^(2019)   ((((−1)^(n+1) )/(x−n+1))) ∣  ....
f(x)g(x)∣=(1)1+1x+11+(1)2+1x+12+(1)3+1x+13++(1)2018+1x+12018+(1)2019+1x+12019=∣Σ2019n=1((1)n+1xn+1).

Leave a Reply

Your email address will not be published. Required fields are marked *