Question Number 201631 by professorleiciano last updated on 09/Dec/23
Answered by mr W last updated on 10/Dec/23
$${totally}\:{number}\:{of}\:{words}:\:\mathrm{6}!=\mathrm{720} \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{in}\:{which}\:\mathrm{3}\:{vowels} \\ $$$${are}\:{together}:\:\mathrm{4}!\mathrm{3}!=\mathrm{144} \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{in}\:{which}\:\mathrm{3}\:{vowels} \\ $$$${are}\:\boldsymbol{{not}}\:{together}:\:\mathrm{720}−\mathrm{144}=\mathrm{576} \\ $$$$\Rightarrow{probability}\:{p}=\frac{\mathrm{576}}{\mathrm{720}}=\mathrm{80\%} \\ $$$${i}.{e}.\:{answer}\:\left({e}\right)\:{is}\:{correct}. \\ $$