Menu Close

Solve-y-t-sin-t-y-t-0-y-2-0-0-y-1-0-1-y-0-0-L-y-t-sin-t-y-t-0-s-2-F-s-sy-0-y-0-L-sin-t-y-t-0-Holy-uck-I-already-know-y-t-ty-t-0-solu




Question Number 201582 by MathedUp last updated on 09/Dec/23
Solve....  y′′(t)−sin(t)y(t)=0 ,   y^((2)) (0)=0 , y^((1)) (0)=−1 , y(0)=0                      L{y′′(t)−sin(t)y(t)}=0  s^2 F(s)−sy(0)−y′(0)−L{sin(t)y(t)}=0  Holy...×uck  I already know y′′(t)−ty(t)=0   solution  C_1 Ai(t)+C_2 Bi(t)  But I Can′t Solve y′′(t)−sin(t)y(t)=0....
$$\mathrm{Solve}…. \\ $$$${y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}\:,\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)=−\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathcal{L}}\left\{{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} \boldsymbol{\mathrm{F}}\left({s}\right)−{sy}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)−\boldsymbol{\mathcal{L}}\left\{\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{Holy}…×\mathrm{uck} \\ $$$$\mathrm{I}\:\mathrm{already}\:\mathrm{know}\:{y}''\left({t}\right)−{ty}\left({t}\right)=\mathrm{0}\:\:\:\mathrm{solution} \\ $$$$\mathrm{C}_{\mathrm{1}} \mathrm{Ai}\left({t}\right)+{C}_{\mathrm{2}} \mathrm{Bi}\left({t}\right) \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{Can}'\mathrm{t}\:\mathrm{Solve}\:{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}….\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *