Menu Close

x-y-z-R-a-b-c-gt-0-prove-that-x-2-a-y-2-b-z-2-c-x-y-z-2-a-b-c-




Question Number 201615 by hardmath last updated on 09/Dec/23
x,y,z ∈ R  a,b,c>0  prove that:  (x^2 /a) + (y^2 /b) + (z^2 /c) ≥ (((x + y + z)^2 )/(a + b + c))
x,y,zRa,b,c>0provethat:x2a+y2b+z2c(x+y+z)2a+b+c
Answered by AST last updated on 09/Dec/23
(√(((x/( (√a))))^2 +((y/( (√b))))^2 +((z/( (√c))))^2 ))(√(((√a))^2 +((√b))^2 +((√c))^2 ))  ≥(x+y+z)  ∣u∣∣v∣≥u∙v where u=⟨(x/( (√a))),(y/( (√b))),(z/( (√c)))⟩;v=⟨(√a),(√b),(√c)⟩
(xa)2+(yb)2+(zc)2(a)2+(b)2+(c)2(x+y+z)u∣∣v∣⩾uvwhereu=xa,yb,zc;v=a,b,c

Leave a Reply

Your email address will not be published. Required fields are marked *