Menu Close

if-f-x-sin-1-x-x-for-x-0-0-for-x-0-where-x-represents-an-integer-x-greatest-x-Find-lim-x-0-f-x-




Question Number 201657 by LimPorly last updated on 10/Dec/23
if  f(x)= { ((((sin (1+[x]))/([x]))  for [x]≠0)),((0  for [x]=0)) :}  where [x] represents an integer x greatest ≤ x  Find lim_(x→0^− ) f(x).
iff(x)={sin(1+[x])[x]for[x]00for[x]=0where[x]representsanintegerxgreatestxFindlimx0f(x).
Answered by aleks041103 last updated on 10/Dec/23
If I understand correctly:  [x]=max{n:n∈Z ∧ x≥n}  i.e.  [2]=2; [3.5]=3; [−1.5]=−2 and so on.    Then  lim_(x→0^− ) [x]=lim_(ε→0^+ )  [0−ε]=lim_(ε→0^+ ) [−ε]=−1  ⇒lim_(x→0^− )  f(x)=( { ((((sin (1+[x]))/([x]))  for [x]≠0)),((0  for [x]=0)) :})_([x]=−1) =  =((sin(1+(−1)))/((−1)))=((sin(0))/(−1))=0
IfIunderstandcorrectly:[x]=max{n:nZxn}i.e.[2]=2;[3.5]=3;[1.5]=2andsoon.Thenlimx0[x]=limε0+[0ε]=limε0+[ε]=1limx0f(x)=({sin(1+[x])[x]for[x]00for[x]=0)[x]=1==sin(1+(1))(1)=sin(0)1=0
Commented by LimPorly last updated on 10/Dec/23
Thank you sir
Thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *