Menu Close

Question-201680




Question Number 201680 by cortano12 last updated on 10/Dec/23
   ⋐
Answered by Calculusboy last updated on 11/Dec/23
Solution: substitute ditectly, we get (0/0)(indeterminant)  let p=2sinx−sim2x     (dp/dx)=2cosx−2cos2x  let q=sinx−xcosx   (dq/dx)=cosx−(cosx−xsinx)  lim_(x→0)  (p/q)= lim_(x→0)  ((2cosx−2cos(2x))/(cosx−cosx+xsinx))=lim_(x→0) ((2cosx−2cos(2x))/(xsinx))  ((lim_(x→0) (2cosx−2cos(2x)))/(lim_(x→0) (xsinx)))=(0/0)  let u=2cosx−2cos(2x)       (du/dx)=−2sinx+4sin(2x)  let k=xsinx   (dk/dx)=sinx+xcosx  lim_(x→0)  (u/k)= lim_(x→0)  ((4sin(2x)−2sinx)/(sinx+xcosx))=(0/0)  let j=4sin(2x)−2sinx     (dj/dx)=8cos(2x)−2cosx  let g=sinx+xcosx     (dg/dx)=cosx+(cosx−xsinc)=2cosx−xsinx  lim_(x→0)  (j/g)= lim_(x→0)  ((8cos(2x)−2cosx)/(2cosx−xsinx))=((8−2)/(2−0))=(6/2)=3  ∴ lim_(x→0)  ((2sinx−sin(2x))/(sinx−xcosx))=3
Solution:substituteditectly,weget00(indeterminant)letp=2sinxsim2xdpdx=2cosx2cos2xletq=sinxxcosxdqdx=cosx(cosxxsinx)limx0pq=limx02cosx2cos(2x)cosxcosx+xsinx=limx02cosx2cos(2x)xsinxlimx0(2cosx2cos(2x))limx0(xsinx)=00letu=2cosx2cos(2x)dudx=2sinx+4sin(2x)letk=xsinxdkdx=sinx+xcosxlimx0uk=limx04sin(2x)2sinxsinx+xcosx=00letj=4sin(2x)2sinxdjdx=8cos(2x)2cosxletg=sinx+xcosxdgdx=cosx+(cosxxsinc)=2cosxxsinxlimx0jg=limx08cos(2x)2cosx2cosxxsinx=8220=62=3limx02sinxsin(2x)sinxxcosx=3

Leave a Reply

Your email address will not be published. Required fields are marked *