Question-201680 Tinku Tara December 10, 2023 Limits 0 Comments FacebookTweetPin Question Number 201680 by cortano12 last updated on 10/Dec/23 ⋐ Answered by Calculusboy last updated on 11/Dec/23 Solution:substituteditectly,weget00(indeterminant)letp=2sinx−sim2xdpdx=2cosx−2cos2xletq=sinx−xcosxdqdx=cosx−(cosx−xsinx)limx→0pq=limx→02cosx−2cos(2x)cosx−cosx+xsinx=limx→02cosx−2cos(2x)xsinxlimx→0(2cosx−2cos(2x))limx→0(xsinx)=00letu=2cosx−2cos(2x)dudx=−2sinx+4sin(2x)letk=xsinxdkdx=sinx+xcosxlimx→0uk=limx→04sin(2x)−2sinxsinx+xcosx=00letj=4sin(2x)−2sinxdjdx=8cos(2x)−2cosxletg=sinx+xcosxdgdx=cosx+(cosx−xsinc)=2cosx−xsinxlimx→0jg=limx→08cos(2x)−2cosx2cosx−xsinx=8−22−0=62=3∴limx→02sinx−sin(2x)sinx−xcosx=3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-x-1-f-x-3f-x-f-x-1-D-f-N-2023-f-1402-1-have-equation-f-x-1-solution-Next Next post: Question-201689 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.