Menu Close

1-y-tgx-ctgx-y-2-y-1-x-2-arctgx-y-3-y-cos-4-x-y-4-x-2t-y-3t-2-5t-x-y-




Question Number 201764 by hardmath last updated on 11/Dec/23
1. y = tgx − ctgx  →  y^′  = ?  2. y = (1 + x^2 ) arctgx → y^′  = ?  3. y = cos^4  x → y^′  = ?  4.  { ((x = 2t)),((y = 3t^2  − 5t)) :}   →   x^′  , y^′  = ?
$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\ $$
Answered by Calculusboy last updated on 11/Dec/23
Solution: (1)  y=tgx−ctgx  if  tgx=tanx  and ctgx=cotx  y′=sec^2 x+cosec^2 x  (2) by using product rule  if tgx=tanx  y′=[(1+x^2 )(d/dx)arctgx+arctgx(d/dx)(1+^2 )]  y′=[(1+x^2 )×(1/(1+x^2 ))+2xarctgx]  y′=1+2x arctgx  (3)y=cos^4 x  let p=cosx  y=(cosx)^4     (dp/dx)=−sinx  y=p^4     (dy/dp)=4p^3   ⇔  y′=4cos^3 x×−sinx=−4cos^3 xsinx  y′=−4cos^3 xsinx
$$\boldsymbol{{Solution}}:\:\left(\mathrm{1}\right)\:\:\boldsymbol{{y}}=\boldsymbol{{tgx}}−\boldsymbol{{ctgx}}\:\:\boldsymbol{{if}}\:\:\boldsymbol{{tgx}}=\boldsymbol{{tanx}}\:\:\boldsymbol{{and}}\:\boldsymbol{{ctgx}}=\boldsymbol{{cotx}} \\ $$$$\boldsymbol{{y}}'=\boldsymbol{{sec}}^{\mathrm{2}} \boldsymbol{{x}}+\boldsymbol{{cosec}}^{\mathrm{2}} \boldsymbol{{x}} \\ $$$$\left(\mathrm{2}\right)\:\boldsymbol{{by}}\:\boldsymbol{{using}}\:\boldsymbol{{product}}\:\boldsymbol{{rule}}\:\:\boldsymbol{{if}}\:\boldsymbol{{tgx}}=\boldsymbol{{tanx}} \\ $$$$\boldsymbol{{y}}'=\left[\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\boldsymbol{{arctgx}}+\boldsymbol{{arctgx}}\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\mathrm{1}+^{\mathrm{2}} \right)\right] \\ $$$$\boldsymbol{{y}}'=\left[\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)×\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }+\mathrm{2}\boldsymbol{{xarctgx}}\right] \\ $$$$\boldsymbol{{y}}'=\mathrm{1}+\mathrm{2}\boldsymbol{{x}}\:\boldsymbol{{arctgx}} \\ $$$$\left(\mathrm{3}\right)\boldsymbol{{y}}=\boldsymbol{{cos}}^{\mathrm{4}} \boldsymbol{{x}}\:\:\boldsymbol{{let}}\:\boldsymbol{{p}}=\boldsymbol{{cosx}} \\ $$$$\boldsymbol{{y}}=\left(\boldsymbol{{cosx}}\right)^{\mathrm{4}} \:\:\:\:\frac{\boldsymbol{{dp}}}{\boldsymbol{{dx}}}=−\boldsymbol{{sinx}} \\ $$$$\boldsymbol{{y}}=\boldsymbol{{p}}^{\mathrm{4}} \:\:\:\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dp}}}=\mathrm{4}\boldsymbol{{p}}^{\mathrm{3}} \:\:\Leftrightarrow\:\:\boldsymbol{{y}}'=\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}×−\boldsymbol{{sinx}}=−\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{xsinx}} \\ $$$$\boldsymbol{{y}}'=−\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{xsinx}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Calculusboy last updated on 12/Dec/23
you  are welcome
$$\boldsymbol{{you}}\:\:\boldsymbol{{are}}\:\boldsymbol{{welcome}} \\ $$
Commented by hardmath last updated on 12/Dec/23
thank you ser
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *