Menu Close

Question-201722




Question Number 201722 by Calculusboy last updated on 11/Dec/23
Commented by Frix last updated on 11/Dec/23
There also should be complex solutions
Therealsoshouldbecomplexsolutions
Answered by Sutrisno last updated on 11/Dec/23
x^2 +y^2 +xy=3  (x+y)^2 −xy=3  xy=(x+y)^2 −3 ...(1)  ((x+y)+1)(4+(x+y)^2 −3+2(x+y))=27  ((x+y)+1)((x+y)^2 +2(x+y)+1)=27  ((x+y)+1)((x+y)+1)^2 =27  ((x+y)+1)^3 =27  x+y=2 ...(2)  xy=2^2 −3→ xy=1  x(2−x)=1  x^2 −2x+1=0  x=1, y=1
x2+y2+xy=3(x+y)2xy=3xy=(x+y)23(1)((x+y)+1)(4+(x+y)23+2(x+y))=27((x+y)+1)((x+y)2+2(x+y)+1)=27((x+y)+1)((x+y)+1)2=27((x+y)+1)3=27x+y=2(2)xy=223xy=1x(2x)=1x22x+1=0x=1,y=1
Commented by Calculusboy last updated on 11/Dec/23
thanks sir
thankssir
Answered by esmaeil last updated on 12/Dec/23
x+y=s→S^2 −p=3  xy=p→(s+1)(4+p+2s)=27→  (s+1)((s^2 +1+2s)=27→  (s+1)=3→s=2→p=1  a^2 −2a+1=0→x=y=1
x+y=sS2p=3xy=p(s+1)(4+p+2s)=27(s+1)((s2+1+2s)=27(s+1)=3s=2p=1a22a+1=0x=y=1
Answered by Rasheed.Sindhi last updated on 12/Dec/23
Slightly different way   { ((x^2 +y^2 +xy=3.......(i))),(((x+y+1)(4+xy+2x+2y)=27...(ii))) :}    (ii)⇒(x+y+1)(1+3+xy+2x+2y)=27            (x+y+1)(1+x^2 +y^2 +xy+xy+2x+2y)=27            (x+y+1)(1+x^2 +y^2 +2xy+2x+2y)=27            (x+y+1)( (x+y)^2 +2(x+y)+1 )=27           (x+y+1) (x+y+1)^2 =27            (x+y+1)^3 =27             x+y+1=3            x+y=2.....(iii)            x^2 +y^2 +2xy=4            x^2 +y^2 +xy+xy=4             3+xy=4              xy=1.......(i)  (iii) & (iv):    x=1,y=1
Slightlydifferentway{x2+y2+xy=3.(i)(x+y+1)(4+xy+2x+2y)=27(ii)(ii)(x+y+1)(1+3+xy+2x+2y)=27(x+y+1)(1+x2+y2+xy+xy+2x+2y)=27(x+y+1)(1+x2+y2+2xy+2x+2y)=27(x+y+1)((x+y)2+2(x+y)+1)=27(x+y+1)(x+y+1)2=27(x+y+1)3=27x+y+1=3x+y=2..(iii)x2+y2+2xy=4x2+y2+xy+xy=43+xy=4xy=1.(i)(iii)&(iv):x=1,y=1
Commented by Calculusboy last updated on 15/Dec/23
thanks sir
thankssir
Answered by Rasheed.Sindhi last updated on 12/Dec/23
A way leading  determinant (((ALL))) the solutions:   { ((x^2 +y^2 +xy=3....(i))),(((x+y+1)(4+xy+2x+2y)=27...(ii))) :}   (ii)⇒(x+y+1)(1+3+xy+2x+2y)=(3)^3         (x+y+1)(1+x^2 +y^2 +xy+xy+2x+2y)=(3)^3         (x+y+1)( (x+y)^2 +2(x+y)+1 )=(3)^3         (x+y+1)(x+y+1)^2 =(3)^3         (x+y+1)^3 =(3)^(3 )         (x+y+1)^3 −(3)^(3 ) =0         {(x+y+1)−3}{(x+y+1)^2 +3(x+y+1)+9}=0^(★★)        x+y+1−3=0_(→real roots)  ∣ (x+y+1)^2 +3(x+y+1)+9=0^★ _(→complex roots)        x+y=2⇒y=2−x  (i)⇒x^2 +(2−x)^2 +x(2−x)=3             x^2 −2x+1=0              (x−1)^2 =0                x=1^✓ ⇒y=2−x=2−1=1^✓      ^★ x+y+1=((−3±(√(9−4(9)(1))))/2)=((−3±3(√3))/2)       x+y=((−3±3(√3))/2)−1=((−5±3(√3))/2)         y=((−5±3(√3))/2)−x  (i)⇒(x+y)^2 −xy=3⇒(((−5±3(√3))/2))^2 −x(((−5±3(√3))/2)−x)=3  let ((−5±3(√3))/2)=a  a^2 −x(a−x)−3=0   x^2 −ax+a^2 −3=0  x=((a±(√(a^2 −4(a^2 −3))))/2)=((a±(√(12−3a^2 )))/2)   y=a−x=a−((a±(√(12−3a^2 )))/2)=((a∓(√(12−3a^2 )))/2)    where a= ((−5±3(√3))/2)
AwayleadingALLthesolutions:{x2+y2+xy=3.(i)(x+y+1)(4+xy+2x+2y)=27(ii)(ii)(x+y+1)(1+3+xy+2x+2y)=(3)3(x+y+1)(1+x2+y2+xy+xy+2x+2y)=(3)3(x+y+1)((x+y)2+2(x+y)+1)=(3)3(x+y+1)(x+y+1)2=(3)3(x+y+1)3=(3)3(x+y+1)3(3)3=0{(x+y+1)3}{(x+y+1)2+3(x+y+1)+9}=0Missing \left or extra \rightx+y=2y=2x(i)x2+(2x)2+x(2x)=3x22x+1=0(x1)2=0x=1y=2x=21=1x+y+1=3±94(9)(1)2=3±332x+y=3±3321=5±332y=5±332x(i)(x+y)2xy=3(5±332)2x(5±332x)=3let5±332=aa2x(ax)3=0x2ax+a23=0x=a±a24(a23)2=a±123a22y=ax=aa±123a22=a123a22wherea=5±332
Commented by Rasheed.Sindhi last updated on 12/Dec/23
^(★★)    x+y+1−3=0 ∣ (x+y+1)^2 +3(x+y+1)+9=0         x+y+1= 3 , 3ω , 3ω^2          x+y=2 , 3ω−1 , 3ω^2 −1  (i)⇒(x+y)^2 −xy=3⇒xy=(x+y)^2 −3           xy=4−3 , (3ω−1)^2 −3 , (3ω^2 −1)^2 −3       ......       ....
x+y+13=0(x+y+1)2+3(x+y+1)+9=0x+y+1=3,3ω,3ω2x+y=2,3ω1,3ω21(i)(x+y)2xy=3xy=(x+y)23xy=43,(3ω1)23,(3ω21)23.
Commented by Calculusboy last updated on 15/Dec/23
nice solution sir
nicesolutionsir
Answered by ajfour last updated on 12/Dec/23
x+y=s   ,  xy=m  s^2 =3+m  (s+1)(2s+m+4)=27  (s+1)(s^2 +2s+1)=27  s=−1+3 , −1+3ω, −1+3ω^2   x, y=((s±(√(3(4−s^2 ))))/2)  say if s=2  x, y=(s/2) = 1
x+y=s,xy=ms2=3+m(s+1)(2s+m+4)=27(s+1)(s2+2s+1)=27s=1+3,1+3ω,1+3ω2x,y=s±3(4s2)2sayifs=2x,y=s2=1
Commented by Calculusboy last updated on 15/Dec/23
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *