Menu Close

Question-201817




Question Number 201817 by Calculusboy last updated on 13/Dec/23
Answered by witcher3 last updated on 13/Dec/23
=∫(sin(ln(x+1))((√(x+1))−1))^2 dx  =∫sin^2 (ln(x+1))(x+2−2(√(x+1)))  ln((√(x+1)))=t  x+1=e^(2t)   ⇔∫sin^2 (2t)(e^(2t) +1−2e^t ).2e^(2t) dt  basic calculus
$$=\int\left(\mathrm{sin}\left(\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)\right)\left(\sqrt{\mathrm{x}+\mathrm{1}}−\mathrm{1}\right)\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$=\int\mathrm{sin}^{\mathrm{2}} \left(\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)\right)\left(\mathrm{x}+\mathrm{2}−\mathrm{2}\sqrt{\mathrm{x}+\mathrm{1}}\right) \\ $$$$\mathrm{ln}\left(\sqrt{\mathrm{x}+\mathrm{1}}\right)=\mathrm{t} \\ $$$$\mathrm{x}+\mathrm{1}=\mathrm{e}^{\mathrm{2t}} \\ $$$$\Leftrightarrow\int\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2t}\right)\left(\mathrm{e}^{\mathrm{2t}} +\mathrm{1}−\mathrm{2e}^{\mathrm{t}} \right).\mathrm{2e}^{\mathrm{2t}} \mathrm{dt} \\ $$$$\mathrm{basic}\:\mathrm{calculus} \\ $$
Commented by justenspi last updated on 15/Dec/23
sir Can you help me with this
$${sir}\:{Can}\:{you}\:{help}\:{me}\:{with}\:{this} \\ $$$$ \\ $$
Commented by justenspi last updated on 15/Dec/23
Commented by Calculusboy last updated on 15/Dec/23
nice sir,i don get am
$$\boldsymbol{{nice}}\:\boldsymbol{{sir}},\boldsymbol{{i}}\:\boldsymbol{{don}}\:\boldsymbol{{get}}\:\boldsymbol{{am}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *