Menu Close

shortest-distance-from-6-0-to-x-2-y-2-16-0-




Question Number 201829 by 281981 last updated on 13/Dec/23
shortest distance from (−6,0)to x^2 −y^2 +16=0
shortestdistancefrom(6,0)tox2y2+16=0
Answered by esmaeil last updated on 13/Dec/23
d=(√((x+6)^2 +y^2 ))=(√(x^2 +12x+36+x^2 +16))=  (√(2x^2 +12x+52))=(√(2(x+3)^2 +34))  if(x=−3)→d=shortest=(√(34))
d=(x+6)2+y2=x2+12x+36+x2+16=Missing \left or extra \rightif(x=3)d=shortest=34
Commented by 281981 last updated on 14/Dec/23
tnq sir
tnqsir
Answered by mr W last updated on 13/Dec/23
(x+6)^2 +y^2 =d^2   x^2 −y^2 +16=0  x^2 −d^2 +(x^2 +6)^2 +16=0  2x^2 +12x+52−d^2 =0  Δ=12^2 −4×2×(52−d^2 )=0  d^2 =34  ⇒d=(√(34))
(x+6)2+y2=d2x2y2+16=0x2d2+(x2+6)2+16=02x2+12x+52d2=0Δ=1224×2×(52d2)=0d2=34d=34
Commented by 281981 last updated on 14/Dec/23
tnq sir
tnqsir

Leave a Reply

Your email address will not be published. Required fields are marked *