Menu Close

If-xyz-R-xyz-1-prove-that-the-following-inequality-holds-x-2x-5-x-4-y-2y-5-y-4-z-2z-5-z-4-3-7-Solution-please-with-an-advice-to-get-better-at-inequalities-and-which-book-wou




Question Number 201859 by York12 last updated on 14/Dec/23
If xyz ∈R^+  , xyz=1 , prove that the following inequality holds:  (x/(2x^5 +x+4))+(y/(2y^5 +y+4))+(z/(2z^5 +z+4))≥(3/7).  Solution please with an advice to get better  at inequalities and which book would you recommend.  Thanks in advance!
$$\mathrm{If}\:{xyz}\:\in\mathbb{R}^{+} \:,\:{xyz}=\mathrm{1}\:,\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}: \\ $$$$\frac{{x}}{\mathrm{2}{x}^{\mathrm{5}} +{x}+\mathrm{4}}+\frac{{y}}{\mathrm{2}{y}^{\mathrm{5}} +{y}+\mathrm{4}}+\frac{{z}}{\mathrm{2}{z}^{\mathrm{5}} +{z}+\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{7}}. \\ $$$$\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{advice}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{better}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{inequalities}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{would}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{recommend}}. \\ $$$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{advance}}! \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *