Question Number 201890 by sonukgindia last updated on 15/Dec/23
Answered by mr W last updated on 15/Dec/23
$${B}'=\left(−\mathrm{2},\mathrm{1}\right) \\ $$$$\frac{{y}_{{P}} −\mathrm{1}}{\mathrm{0}−\left(−\mathrm{2}\right)}=\frac{\mathrm{5}−\mathrm{1}}{\mathrm{5}−\left(−\mathrm{2}\right)} \\ $$$$\Rightarrow{y}_{{P}} =\frac{\mathrm{15}}{\mathrm{7}}\:\Rightarrow{P}\left(\mathrm{0},\:\frac{\mathrm{15}}{\mathrm{7}}\right) \\ $$$$\left({d}_{\mathrm{1}} +{d}_{\mathrm{2}} \right)_{{min}} ={AB}'=\sqrt{\mathrm{7}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }=\sqrt{\mathrm{65}} \\ $$
Commented by ajfour last updated on 15/Dec/23
$${What}\:{if}\:{instead}\:{of}\:{y}\:{axis}\:\left({x}=\mathrm{0}\right), \\ $$$${P}\:{lies}\:{on}\:\:{parabola}\:\:{x}=\sqrt{{y}}\:;\:{what}\:{is} \\ $$$${d}_{{min}} =\left({d}_{\mathrm{1}} +{d}_{\mathrm{2}} \right)_{{min}} =?\:\: \\ $$
Commented by ajfour last updated on 16/Dec/23
$${Say}\:{P}\left({x},\:{x}^{\mathrm{2}} \right)\:\:\:\:;\:\:\:\:\:{d}_{\mathrm{1}} +{d}_{\mathrm{2}} ={s}\left({x}\right) \\ $$$${s}\left({x}\right)=\sqrt{\left(\mathrm{5}−{x}\right)^{\mathrm{2}} +\left(\mathrm{5}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }+\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${s}_{{min}} ={s}\left({x}_{\mathrm{0}} \right)\:\:.\:{Find}\:{x}_{\mathrm{0}} . \\ $$$${s}^{\mathrm{2}} ={h}+{k}+\mathrm{2}\sqrt{{hk}} \\ $$$${h}−{k}=\mathrm{24}−\mathrm{8}{x}^{\mathrm{2}} +\mathrm{21}−\mathrm{6}{x} \\ $$$${h}+{k}=\mathrm{2}{x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{55} \\ $$$$\frac{{ds}}{{dx}}=\frac{\left(\frac{{dh}}{{dx}}\right)}{\mathrm{2}\sqrt{{h}}}+\frac{\left(\frac{{dk}}{{dx}}\right)}{\mathrm{2}\sqrt{{k}}}=\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{{k}}{{h}}=−\frac{{dk}}{{dh}} \\ $$$$\Rightarrow\:\:{kdh}+{hdk}=\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{{dh}}{{h}}+\frac{{dk}}{{k}}=\mathrm{0} \\ $$$$\mathrm{ln}\:\left({hk}\right)={c}=\mathrm{ln}\:\left({h}_{\mathrm{0}} {k}_{\mathrm{0}} \right)=\mathrm{ln}\:\mathrm{250} \\ $$$$\Rightarrow\:\:{hk}=\mathrm{250} \\ $$$$\:\:\:\:\:\:\frac{{k}}{{h}}=−\left\{\frac{\mathrm{2}\left({x}−\mathrm{2}\right)+\mathrm{4}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}\left({x}−\mathrm{5}\right)+\mathrm{4}{x}\left({x}^{\mathrm{2}} −\mathrm{5}\right)}\right\} \\ $$$${s}^{\mathrm{2}} −\mathrm{10}\sqrt{\mathrm{10}}={h}+{k} \\ $$$${also}\:\:\:\frac{{dh}}{{dx}}+\frac{{dk}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{8}{x}^{\mathrm{3}} −\mathrm{20}{x}−\mathrm{14}=\mathrm{0} \\ $$$${or}\:\:\left(\mathrm{2}{x}\right)^{\mathrm{3}} −\mathrm{10}\left(\mathrm{2}{x}\right)−\mathrm{14}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{9}^{\mathrm{2}/\mathrm{3}} }{\mathrm{18}}\left\{\left(\mathrm{63}+\sqrt{\mathrm{969}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{63}−\sqrt{\mathrm{969}}\right)^{\mathrm{1}/\mathrm{3}} \right\} \\ $$$$\:\approx\:\mathrm{1}.\mathrm{855562} \\ $$
Commented by mr W last updated on 15/Dec/23
$${P}\left({p},\:{p}^{\mathrm{2}} \right) \\ $$$${tangent}\:{through}\:{P}: \\ $$$${y}={p}^{\mathrm{2}} +\mathrm{2}{p}\left({x}−{p}\right) \\ $$$$\Rightarrow\mathrm{2}{px}−{y}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{0} \\ $$$${image}\:{of}\:{B}\left(\mathrm{2},\:\mathrm{1}\right)\:{is}\:{B}'\left({h},\:{k}\right) \\ $$$$\frac{{h}−\mathrm{2}}{\mathrm{2}{p}}=\frac{{k}−\mathrm{1}}{−\mathrm{1}}=\frac{−\mathrm{2}\left(\mathrm{2}{p}×\mathrm{2}−\mathrm{1}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)}{\left(\mathrm{2}{p}\right)^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{h}=\mathrm{2}+\frac{\mathrm{4}{p}\left({p}^{\mathrm{2}} −\mathrm{4}{p}+\mathrm{1}\right)}{\mathrm{4}{p}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{k}=\mathrm{1}−\frac{\mathrm{2}\left({p}^{\mathrm{2}} −\mathrm{4}{p}+\mathrm{1}\right)}{\mathrm{4}{p}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{{p}−{h}}{\mathrm{5}−{h}}=\frac{{p}^{\mathrm{2}} −{k}}{\mathrm{5}−{k}} \\ $$$$\frac{{p}−\mathrm{5}}{−\mathrm{4}{p}^{\mathrm{3}} +\mathrm{28}{p}^{\mathrm{2}} −\mathrm{4}{p}+\mathrm{3}}=\frac{{p}^{\mathrm{2}} −\mathrm{5}}{\mathrm{18}{p}^{\mathrm{2}} −\mathrm{8}{p}+\mathrm{6}} \\ $$$$\mathrm{4}{p}^{\mathrm{5}} −\mathrm{28}{p}^{\mathrm{4}} +\mathrm{2}{p}^{\mathrm{3}} +\mathrm{39}{p}^{\mathrm{2}} +\mathrm{26}{p}−\mathrm{15}=\mathrm{0} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{55436} \\ $$
Commented by mr W last updated on 15/Dec/23
Commented by ajfour last updated on 15/Dec/23
$${splendid}\:{way}!\:{Thanks}\:{sir}. \\ $$
Answered by cortano12 last updated on 15/Dec/23
$$\:\mathrm{let}\:\mathrm{P}\left(\mathrm{0},\mathrm{b}\right) \\ $$$$\:\Rightarrow\mathrm{AP}=\sqrt{\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\:\Rightarrow\mathrm{BP}=\sqrt{\mathrm{2}^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\:\Rightarrow\mathrm{f}\left(\mathrm{b}\right)=\sqrt{\mathrm{25}+\left(\mathrm{5}−\mathrm{b}\right)^{\mathrm{2}} }+\sqrt{\mathrm{4}+\left(\mathrm{1}−\mathrm{b}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{f}\:'\left(\mathrm{b}\right)=\:\frac{−\left(\mathrm{5}−\mathrm{b}\right)}{\:\sqrt{\mathrm{25}+\left(\mathrm{5}−\mathrm{b}\right)^{\mathrm{2}} }}\:−\frac{\left(\mathrm{1}−\mathrm{b}\right)}{\:\sqrt{\mathrm{4}+\left(\mathrm{1}−\mathrm{b}\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{f}\:'\left(\mathrm{b}\right)=\:\mathrm{0}\: \\ $$$$\:\frac{\mathrm{b}−\mathrm{5}}{\:\sqrt{\mathrm{25}+\left(\mathrm{5}−\mathrm{b}\right)^{\mathrm{2}} }}\:=\:\frac{\mathrm{1}−\mathrm{b}}{\:\sqrt{\mathrm{4}+\left(\mathrm{1}−\mathrm{b}\right)^{\mathrm{2}} }} \\ $$$$\:\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{10b}+\mathrm{25}}{\:\mathrm{50}−\mathrm{10b}+\mathrm{b}^{\mathrm{2}} }\:=\:\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{2b}+\mathrm{1}}{\mathrm{5}−\mathrm{2b}+\mathrm{b}^{\mathrm{2}} } \\ $$$$\:\begin{cases}{\boldsymbol{\mathrm{b}}_{\mathrm{1}} =−\frac{\mathrm{5}}{\mathrm{3}}}\\{\mathrm{b}_{\mathrm{2}} =\frac{\mathrm{15}}{\mathrm{7}}}\end{cases} \\ $$$$\:\begin{cases}{\boldsymbol{\mathrm{P}}_{\mathrm{1}} \left(\mathrm{0},−\frac{\mathrm{5}}{\mathrm{3}}\right)}\\{\mathrm{P}_{\mathrm{2}} \left(\mathrm{0},\frac{\mathrm{15}}{\mathrm{7}}\right)}\end{cases}\Rightarrow\begin{cases}{\mathrm{d}_{\mathrm{1}} =\sqrt{\mathrm{25}+\frac{\mathrm{400}}{\mathrm{9}}}+\sqrt{\mathrm{4}+\frac{\mathrm{64}}{\mathrm{9}}}=\frac{\mathrm{35}}{\mathrm{3}}\approx\mathrm{11}.\mathrm{67}}\\{\mathrm{d}_{\mathrm{2}} =\sqrt{\mathrm{25}+\frac{\mathrm{400}}{\mathrm{49}}}+\sqrt{\mathrm{4}+\frac{\mathrm{64}}{\mathrm{49}}}=\sqrt{\mathrm{65}}\approx\mathrm{8}.\mathrm{062}}\end{cases} \\ $$$$\:\therefore\:\mathrm{d}_{\mathrm{min}} =\:\sqrt{\mathrm{65}}\:\mathrm{at}\:\mathrm{P}\left(\mathrm{0},\frac{\mathrm{15}}{\mathrm{7}}\right) \\ $$