Question Number 202019 by MATHEMATICSAM last updated on 18/Dec/23
$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\: \\ $$$${ax}^{\mathrm{2}} \:+\:\mathrm{2}{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\alpha\:+\:\delta\:\mathrm{and}\:\beta\:+\:\delta\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{Ax}^{\mathrm{2}} \:+\:\mathrm{2}{Bx}\:+\:{C}\:=\:\mathrm{0}\:\mathrm{for}\:\mathrm{some}\: \\ $$$$\mathrm{constant}\:\delta\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{b}^{\mathrm{2}} \:−\:{ac}}{{a}^{\mathrm{2}} }\:=\:\frac{{B}^{\mathrm{2}} \:−\:{AC}}{{A}^{\mathrm{2}} }\:. \\ $$
Answered by esmaeil last updated on 18/Dec/23
$$\alpha−\beta=\frac{\sqrt{{b}^{\mathrm{2}} −{ac}}}{\mid{a}\mid}=\left(\alpha+\delta\right)−\left(\beta+\delta\right)= \\ $$$$\frac{\sqrt{{B}^{\mathrm{2}} −{AC}}}{\mid{A}\mid}\rightarrow\frac{{b}^{\mathrm{2}} −{ac}}{{a}^{\mathrm{2}} }=\frac{{B}^{\mathrm{2}} −{AC}}{{A}^{\mathrm{2}} } \\ $$$$\:\:\alpha−\beta=\frac{\sqrt{\delta^{'} }}{\mid{a}\mid} \\ $$
Commented by MM42 last updated on 18/Dec/23
$$\:\cancel{\lesseqgtr} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Dec/23
$${Another}\:{way} \\ $$$$\bullet\alpha\:\&\:\beta\:{are}\:{the}\:{roots}\:{of}\:{ax}^{\mathrm{2}} \:+\:\mathrm{2}{bx}\:+\:{c}\:=\:\mathrm{0} \\ $$$$\:\:\:\alpha+\beta=−\frac{\mathrm{2}{b}}{{a}}\:,\:\alpha\beta=\frac{{c}}{{a}} \\ $$$$\bullet\mathcal{I}{f}\:{the}\:{roots}\:{are}\:\alpha+\delta\:\&\:\beta+\delta\:\left(\delta\:{is}\:{fixed}\:{constant}\right) \\ $$$$\:\:\:\mathcal{T}{he}\:{equation}\:{will}\:{be}: \\ $$$$\:\:\:\left(\alpha+\delta\right)+\left(\beta+\delta\right)=\alpha+\beta+\mathrm{2}\delta=−\frac{\mathrm{2}{b}}{{a}}+\mathrm{2}\delta=−\frac{\mathrm{2}{B}}{{A}} \\ $$$$\Rightarrow\frac{{B}}{{A}}=\frac{−\mathrm{2}{b}+\mathrm{2}{a}\delta}{−\mathrm{2}{a}} \\ $$$$\:\:\:\left(\alpha+\delta\right).\left(\beta+\delta\right)=\alpha\beta+\delta^{\mathrm{2}} +\left(\alpha+\beta\right)\delta=\frac{{c}}{{a}}−\frac{\mathrm{2}{b}\delta}{{a}}+\delta^{\mathrm{2}} =\frac{{C}}{{A}} \\ $$$$\Rightarrow\frac{{C}}{{A}}=\frac{{c}−\mathrm{2}{b}\delta+{a}\delta^{\mathrm{2}} }{{a}} \\ $$$$\:\frac{{B}^{\mathrm{2}} \:−\:{AC}}{{A}^{\mathrm{2}} }=\left(\frac{{B}}{{A}}\right)^{\mathrm{2}} −\frac{{C}}{{A}}=\left(\frac{−\mathrm{2}{b}+\mathrm{2}{a}\delta}{−\mathrm{2}{a}}\right)^{\mathrm{2}} −\frac{{c}−\mathrm{2}{b}\delta+{a}\delta^{\mathrm{2}} }{{a}} \\ $$$$\:\:\:\:=\frac{\mathrm{4}{b}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} \delta^{\mathrm{2}} −\mathrm{8}{ab}\delta}{\mathrm{4}{a}^{\mathrm{2}} }−\frac{{c}−\mathrm{2}{b}\delta+{a}\delta^{\mathrm{2}} }{{a}} \\ $$$$\:\:\:\:=\frac{\mathrm{4}{b}^{\mathrm{2}} +\cancel{\mathrm{4}{a}^{\mathrm{2}} \delta^{\mathrm{2}} }−\cancel{\mathrm{8}{ab}\delta}−\mathrm{4}{ac}+\cancel{\mathrm{8}{ab}\delta}−\cancel{\mathrm{4}{a}^{\mathrm{2}} \delta^{\mathrm{2}} }}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{4}{b}^{\mathrm{2}} −\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} −{ac}}{{a}^{\mathrm{2}} } \\ $$$${QED} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Dec/23
$$\frac{{b}^{\mathrm{2}} \:−\:{ac}}{{a}^{\mathrm{2}} }\:=\:\frac{{B}^{\mathrm{2}} \:−\:{AC}}{{A}^{\mathrm{2}} }\:. \\ $$$$\left(\frac{{b}}{{a}}\right)^{\mathrm{2}} −\frac{{c}}{{a}}=\left(\frac{{B}}{{A}}\right)^{\mathrm{2}} −\frac{{C}}{{A}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{−\mathrm{2}{b}}{{a}}\right)^{\mathrm{2}} −\frac{{c}}{{a}}=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{−\mathrm{2}{B}}{{A}}\right)^{\mathrm{2}} −\frac{{C}}{{A}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\alpha+\beta\right)^{\mathrm{2}} −\alpha\beta=\frac{\mathrm{1}}{\mathrm{4}}\left(\:\left(\alpha+\delta\right)+\left(\beta+\delta\right)\:\right)^{\mathrm{2}} −\left(\alpha+\delta\right)\left(\beta+\delta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\alpha+\beta\right)^{\mathrm{2}} −\alpha\beta=\frac{\mathrm{1}}{\mathrm{4}}\left(\alpha+\beta+\mathrm{2}\delta\:\right)^{\mathrm{2}} −\left(\alpha\beta+\left(\alpha+\beta\right)\delta+\delta^{\mathrm{2}} \right) \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta=\left(\alpha+\beta+\mathrm{2}\delta\right)^{\mathrm{2}} −\mathrm{4}\left(\alpha\beta+\left(\alpha+\beta\right)\delta+\delta^{\mathrm{2}} \right) \\ $$$$\:\:\:=\left(\alpha+\beta\right)^{\mathrm{2}} +\cancel{\mathrm{4}\left(\alpha+\beta\right)\delta}+\cancel{\mathrm{4}\delta^{\mathrm{2}} }−\mathrm{4}\alpha\beta−\cancel{\mathrm{4}\left(\alpha+\beta\right)\delta}−\cancel{\mathrm{4}\delta^{\mathrm{2}} } \\ $$$$\:\:\:=\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta \\ $$$${lhs}={rhs} \\ $$$${proved} \\ $$