Menu Close

If-and-are-the-roots-of-the-ax-2-2bx-c-0-and-and-are-the-roots-of-Ax-2-2Bx-C-0-for-some-constant-then-prove-that-b-2-ac-a-2-B-2-AC-A-2-




Question Number 202019 by MATHEMATICSAM last updated on 18/Dec/23
If α and β are the roots of the   ax^2  + 2bx + c = 0 and α + δ and β + δ are  the roots of Ax^2  + 2Bx + C = 0 for some   constant δ then prove that  ((b^2  − ac)/a^2 ) = ((B^2  − AC)/A^2 ) .
Ifαandβaretherootsoftheax2+2bx+c=0andα+δandβ+δaretherootsofAx2+2Bx+C=0forsomeconstantδthenprovethatb2aca2=B2ACA2.
Answered by esmaeil last updated on 18/Dec/23
α−β=((√(b^2 −ac))/(∣a∣))=(α+δ)−(β+δ)=  ((√(B^2 −AC))/(∣A∣))→((b^2 −ac)/a^2 )=((B^2 −AC)/A^2 )    α−β=((√δ^′ )/(∣a∣))
αβ=b2aca=(α+δ)(β+δ)=B2ACAb2aca2=B2ACA2αβ=δa
Commented by MM42 last updated on 18/Dec/23
 ⋛
Answered by Rasheed.Sindhi last updated on 19/Dec/23
Another way  •α & β are the roots of ax^2  + 2bx + c = 0     α+β=−((2b)/a) , αβ=(c/a)  •If the roots are α+δ & β+δ (δ is fixed constant)     The equation will be:     (α+δ)+(β+δ)=α+β+2δ=−((2b)/a)+2δ=−((2B)/A)  ⇒(B/A)=((−2b+2aδ)/(−2a))     (α+δ).(β+δ)=αβ+δ^2 +(α+β)δ=(c/a)−((2bδ)/a)+δ^2 =(C/A)  ⇒(C/A)=((c−2bδ+aδ^2 )/a)   ((B^2  − AC)/A^2 )=((B/A))^2 −(C/A)=(((−2b+2aδ)/(−2a)))^2 −((c−2bδ+aδ^2 )/a)      =((4b^2 +4a^2 δ^2 −8abδ)/(4a^2 ))−((c−2bδ+aδ^2 )/a)      =((4b^2 +4a^2 δ^2 −8abδ−4ac+8abδ−4a^2 δ^2 )/(4a^2 ))      =((4b^2 −4ac)/(4a^2 ))=((b^2 −ac)/a^2 )  QED
Anotherwayα&βaretherootsofax2+2bx+c=0α+β=2ba,αβ=caIftherootsareα+δ&β+δ(δisfixedconstant)Theequationwillbe:(α+δ)+(β+δ)=α+β+2δ=2ba+2δ=2BABA=2b+2aδ2a(α+δ).(β+δ)=αβ+δ2+(α+β)δ=ca2bδa+δ2=CACA=c2bδ+aδ2aB2ACA2=(BA)2CA=(2b+2aδ2a)2c2bδ+aδ2a=4b2+4a2δ28abδ4a2c2bδ+aδ2a=4b2+4a2δ28abδ4ac+8abδ4a2δ24a2=4b24ac4a2=b2aca2QED
Answered by Rasheed.Sindhi last updated on 19/Dec/23
((b^2  − ac)/a^2 ) = ((B^2  − AC)/A^2 ) .  ((b/a))^2 −(c/a)=((B/A))^2 −(C/A)  (1/4)(((−2b)/a))^2 −(c/a)=(1/4)(((−2B)/A))^2 −(C/A)  (1/4)(α+β)^2 −αβ=(1/4)( (α+δ)+(β+δ) )^2 −(α+δ)(β+δ)  (1/4)(α+β)^2 −αβ=(1/4)(α+β+2δ )^2 −(αβ+(α+β)δ+δ^2 )  (α+β)^2 −4αβ=(α+β+2δ)^2 −4(αβ+(α+β)δ+δ^2 )     =(α+β)^2 +4(α+β)δ+4δ^2 −4αβ−4(α+β)δ−4δ^2      =(α+β)^2 −4αβ  lhs=rhs  proved
b2aca2=B2ACA2.(ba)2ca=(BA)2CA14(2ba)2ca=14(2BA)2CA14(α+β)2αβ=14((α+δ)+(β+δ))2(α+δ)(β+δ)14(α+β)2αβ=14(α+β+2δ)2(αβ+(α+β)δ+δ2)(α+β)24αβ=(α+β+2δ)24(αβ+(α+β)δ+δ2)=(α+β)2+4(α+β)δ+4δ24αβ4(α+β)δ4δ2=(α+β)24αβlhs=rhsproved

Leave a Reply

Your email address will not be published. Required fields are marked *