Menu Close

If-and-are-the-roots-of-ax-2-bx-c-0-and-k-and-k-are-the-roots-of-lx-2-mx-n-0-then-prove-that-k-1-2-b-a-m-l-




Question Number 202114 by MATHEMATICSAM last updated on 21/Dec/23
If α and β are the roots of   ax^2  + bx + c = 0 and α + k and β + k  are   the roots of lx^2  + mx + n = 0 then prove  that k = (1/2)((b/a) − (m/l)).
Ifαandβaretherootsofax2+bx+c=0andα+kandβ+karetherootsoflx2+mx+n=0thenprovethatk=12(baml).
Answered by aleks041103 last updated on 21/Dec/23
ax^2 +bx+c=0⇔x=α,β  ⇒x^2 +(b/a)x+(c/a)=0⇔x=α,β  lx^2 +mx+n=0 ⇔ x=α+k,β+k  ⇒l(x+k)^2 +m(x+k)+n=0⇔x=α,β  ⇒l(x^2 +2xk+k^2 )+mx+mk+n=0  lx^2 +(2kl+m)x+(lk^2 +mk+n)=0  ⇒x^2 +(2k+(m/l))x+(k^2 +((mk+n)/l))=0  ⇒(b/a)=2k+(m/l)  ⇒k=(1/2)((b/a)−(m/4))
ax2+bx+c=0x=α,βx2+bax+ca=0x=α,βlx2+mx+n=0x=α+k,β+kl(x+k)2+m(x+k)+n=0x=α,βl(x2+2xk+k2)+mx+mk+n=0lx2+(2kl+m)x+(lk2+mk+n)=0x2+(2k+ml)x+(k2+mk+nl)=0ba=2k+mlk=12(bam4)
Answered by cortano12 last updated on 21/Dec/23
   { ((ax^2 +bx+c=0 ⇒α+β=−(b/a))),((lx^2 +mx+n=0⇒α+β+2k=−(m/l))) :}   ⇒−(b/a) + 2k =−(m/l)   ⇒2k = (b/a)−(m/l)   ⇒ k =(1/2) ((b/a) − (m/l) )
{ax2+bx+c=0α+β=balx2+mx+n=0α+β+2k=mlba+2k=ml2k=bamlk=12(baml)

Leave a Reply

Your email address will not be published. Required fields are marked *