Question Number 202114 by MATHEMATICSAM last updated on 21/Dec/23
$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\alpha\:+\:{k}\:\mathrm{and}\:\beta\:+\:{k}\:\:\mathrm{are}\: \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{lx}^{\mathrm{2}} \:+\:{mx}\:+\:{n}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{k}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{b}}{{a}}\:−\:\frac{{m}}{{l}}\right). \\ $$
Answered by aleks041103 last updated on 21/Dec/23
$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\Leftrightarrow{x}=\alpha,\beta \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\frac{{b}}{{a}}{x}+\frac{{c}}{{a}}=\mathrm{0}\Leftrightarrow{x}=\alpha,\beta \\ $$$${lx}^{\mathrm{2}} +{mx}+{n}=\mathrm{0}\:\Leftrightarrow\:{x}=\alpha+{k},\beta+{k} \\ $$$$\Rightarrow{l}\left({x}+{k}\right)^{\mathrm{2}} +{m}\left({x}+{k}\right)+{n}=\mathrm{0}\Leftrightarrow{x}=\alpha,\beta \\ $$$$\Rightarrow{l}\left({x}^{\mathrm{2}} +\mathrm{2}{xk}+{k}^{\mathrm{2}} \right)+{mx}+{mk}+{n}=\mathrm{0} \\ $$$${lx}^{\mathrm{2}} +\left(\mathrm{2}{kl}+{m}\right){x}+\left({lk}^{\mathrm{2}} +{mk}+{n}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\left(\mathrm{2}{k}+\frac{{m}}{{l}}\right){x}+\left({k}^{\mathrm{2}} +\frac{{mk}+{n}}{{l}}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{{b}}{{a}}=\mathrm{2}{k}+\frac{{m}}{{l}} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{b}}{{a}}−\frac{{m}}{\mathrm{4}}\right) \\ $$$$ \\ $$
Answered by cortano12 last updated on 21/Dec/23
$$\:\:\begin{cases}{{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:\Rightarrow\alpha+\beta=−\frac{{b}}{{a}}}\\{{lx}^{\mathrm{2}} +{mx}+{n}=\mathrm{0}\Rightarrow\alpha+\beta+\mathrm{2}{k}=−\frac{{m}}{{l}}}\end{cases} \\ $$$$\:\Rightarrow−\frac{{b}}{{a}}\:+\:\mathrm{2}{k}\:=−\frac{{m}}{{l}} \\ $$$$\:\Rightarrow\mathrm{2}{k}\:=\:\frac{{b}}{{a}}−\frac{{m}}{{l}} \\ $$$$\:\Rightarrow\:{k}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\left(\frac{{b}}{{a}}\:−\:\frac{{m}}{{l}}\:\right) \\ $$