Menu Close

If-and-are-the-roots-of-ax-2-bx-c-0-If-1-and-1-are-the-roots-of-a-1-x-2-b-1-x-c-1-0-If-b-1-a-1-k-b-c-then-k-




Question Number 202120 by MATHEMATICSAM last updated on 21/Dec/23
If α and β are the roots of   ax^2  + bx + c = 0. If  ((1 − α)/α) and ((1 − β)/β) are  the roots of a_1 x^2  + b_1 x + c_1  = 0. If  (b_1 /a_1 ) = k + (b/c) then k = ?
Ifαandβaretherootsofax2+bx+c=0.If1ααand1ββaretherootsofa1x2+b1x+c1=0.Ifb1a1=k+bcthenk=?
Answered by cortano12 last updated on 21/Dec/23
  { ((ax^2 +bx+c=0⇒α+β=−(b/a))),((a_1 x^2 +b_1 x+c_1 =0⇒(1/α)+(1/β)−2=−(b_1 /a_1 ))) :}   ⇒ −(b/c) −2 = −(b_1 /a_1 )   ⇒(b/c) + 2 = (b_1 /a_1 ) = k+(b/c)   ∴ k = 2
{ax2+bx+c=0α+β=baa1x2+b1x+c1=01α+1β2=b1a1bc2=b1a1bc+2=b1a1=k+bck=2
Answered by Rasheed.Sindhi last updated on 21/Dec/23
(b_1 /a_1 ) = k + (b/c)  k=(b_1 /a_1 )−(b/c)    =−(−(b_1 /a_1 ))+(−(b/a)÷(c/a))   =−(((1 − α)/α) + ((1 − β)/β))+(α+β)÷αβ   =−(((β−αβ+α−αβ)/(αβ)))+((α+β)/(αβ))    =((−(α+β)+2αβ+(α+β))/(αβ))=2
b1a1=k+bck=b1a1bc=(b1a1)+(ba÷ca)=(1αα+1ββ)+(α+β)÷αβ=(βαβ+ααβαβ)+α+βαβ=(α+β)+2αβ+(α+β)αβ=2

Leave a Reply

Your email address will not be published. Required fields are marked *