Question Number 202120 by MATHEMATICSAM last updated on 21/Dec/23
$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{If}\:\:\frac{\mathrm{1}\:−\:\alpha}{\alpha}\:\mathrm{and}\:\frac{\mathrm{1}\:−\:\beta}{\beta}\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{a}_{\mathrm{1}} {x}^{\mathrm{2}} \:+\:{b}_{\mathrm{1}} {x}\:+\:{c}_{\mathrm{1}} \:=\:\mathrm{0}.\:\mathrm{If} \\ $$$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\:=\:{k}\:+\:\frac{{b}}{{c}}\:\mathrm{then}\:{k}\:=\:? \\ $$
Answered by cortano12 last updated on 21/Dec/23
$$\:\begin{cases}{{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\Rightarrow\alpha+\beta=−\frac{{b}}{{a}}}\\{{a}_{\mathrm{1}} {x}^{\mathrm{2}} +{b}_{\mathrm{1}} {x}+{c}_{\mathrm{1}} =\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}−\mathrm{2}=−\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }}\end{cases} \\ $$$$\:\Rightarrow\:−\frac{{b}}{{c}}\:−\mathrm{2}\:=\:−\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} } \\ $$$$\:\Rightarrow\frac{{b}}{{c}}\:+\:\mathrm{2}\:=\:\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\:=\:{k}+\frac{{b}}{{c}} \\ $$$$\:\therefore\:{k}\:=\:\mathrm{2} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Dec/23
$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\:=\:{k}\:+\:\frac{{b}}{{c}} \\ $$$${k}=\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }−\frac{{b}}{{c}} \\ $$$$\:\:=−\left(−\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)+\left(−\frac{{b}}{{a}}\boldsymbol{\div}\frac{{c}}{{a}}\right) \\ $$$$\:=−\left(\frac{\mathrm{1}\:−\:\alpha}{\alpha}\:+\:\frac{\mathrm{1}\:−\:\beta}{\beta}\right)+\left(\alpha+\beta\right)\boldsymbol{\div}\alpha\beta \\ $$$$\:=−\left(\frac{\beta−\alpha\beta+\alpha−\alpha\beta}{\alpha\beta}\right)+\frac{\alpha+\beta}{\alpha\beta} \\ $$$$\:\:=\frac{−\cancel{\left(\alpha+\beta\right)}+\mathrm{2}\alpha\beta+\cancel{\left(\alpha+\beta\right)}}{\alpha\beta}=\mathrm{2} \\ $$