Menu Close

Question-202127




Question Number 202127 by Calculusboy last updated on 21/Dec/23
Answered by qaz last updated on 21/Dec/23
∫_(π/6) ^(π/3) (dx/(1+tan^π  x))=∫_(π/6) ^(π/3) (dx/(1+cot^π x))=(1/2)∫_(π/6) ^(π/3) ((1/(1+tan^π  x))+(1/(1+cot^π x)))dx  =(1/2)∫_(π/6) ^(π/3) dx=(π/4)
$$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{tan}^{\pi} \:{x}}=\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{cot}\:^{\pi} {x}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\pi} \:{x}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:^{\pi} {x}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} {dx}=\frac{\pi}{\mathrm{4}} \\ $$
Commented by Calculusboy last updated on 22/Dec/23
nice solution sir
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *