Menu Close

2-2023-abc-a-b-c-




Question Number 202203 by SEKRET last updated on 22/Dec/23
                       2^(2023) = abc.............^(______________)              a+b+c = ?
$$\:\: \\ $$$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2023}} =\:\overset{\_\_\_\_\_\_\_\_\_\_\_\_\_\_} {\boldsymbol{\mathrm{abc}}………….} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}\:=\:? \\ $$$$ \\ $$$$ \\ $$$$\: \\ $$$$ \\ $$
Answered by Frix last updated on 22/Dec/23
With a calculator not capable of exact  numbers as great as ≈10^(609) :  log 2^(2023)  =2023log 2  log 2 ≈.301029995664  2023log 2 ≈608.983681228  10^(.983681228) ≈9.63121833  2^(2023) =963...  9+6+3=18
$$\mathrm{With}\:\mathrm{a}\:\mathrm{calculator}\:\mathrm{not}\:\mathrm{capable}\:\mathrm{of}\:\mathrm{exact} \\ $$$$\mathrm{numbers}\:\mathrm{as}\:\mathrm{great}\:\mathrm{as}\:\approx\mathrm{10}^{\mathrm{609}} : \\ $$$$\mathrm{log}\:\mathrm{2}^{\mathrm{2023}} \:=\mathrm{2023log}\:\mathrm{2} \\ $$$$\mathrm{log}\:\mathrm{2}\:\approx.\mathrm{301029995664} \\ $$$$\mathrm{2023log}\:\mathrm{2}\:\approx\mathrm{608}.\mathrm{983681228} \\ $$$$\mathrm{10}^{.\mathrm{983681228}} \approx\mathrm{9}.\mathrm{63121833} \\ $$$$\mathrm{2}^{\mathrm{2023}} =\mathrm{963}… \\ $$$$\mathrm{9}+\mathrm{6}+\mathrm{3}=\mathrm{18} \\ $$
Commented by SEKRET last updated on 23/Dec/23
   Hello, thank you sir for your reply. Can it be done without a calculator? Is there an easier way?
$$\: \\ $$Hello, thank you sir for your reply. Can it be done without a calculator? Is there an easier way?
Commented by Frix last updated on 23/Dec/23
I don′t see any other way.
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{other}\:\mathrm{way}. \\ $$
Commented by SEKRET last updated on 23/Dec/23
thank you sir Frix
$$\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{Frix}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *