Menu Close

If-are-the-roots-of-x-2-ax-b-0-and-are-the-roots-of-x-2-px-q-0-then-show-that-a-2-p-2-4-b-q-




Question Number 202193 by MATHEMATICSAM last updated on 22/Dec/23
If α, β are the roots of x^2  + ax + b =  0   and α + δ, β + δ are the roots of   x^2  + px + q = 0 then show that   a^2  − p^2  = 4(b − q).
Ifα,βaretherootsofx2+ax+b=0andα+δ,β+δaretherootsofx2+px+q=0thenshowthata2p2=4(bq).
Answered by Rasheed.Sindhi last updated on 22/Dec/23
 { ((x^2  + ax + b =  0 ; α+β =−a,αβ=b)),((x^2  + px + q = 0 ;^★ (α + δ)+(β + δ)=−p,^⧫ (α + δ)(β + δ)=q)) :}  ^★  α+β+2δ=−p⇒−a+2δ=−p⇒a−p=2δ⇒δ=((a−p)/2)  ^⧫  αβ+(α+β)δ+δ^2 =q⇒b−aδ+δ^2 ⇒b−q=aδ−δ^2     ⇒b−q=a(((a−p)/2))−(((a−p)/2))^2    ⇒b−q=(((a−p)/2))(a−((a−p)/2))=(((a−p)/2))(((a+p)/2))  ⇒4(b−q)=a^2 −p^2       QED
{x2+ax+b=0;α+β=a,αβ=bx2+px+q=0;(α+δ)+(β+δ)=p,(α+δ)(β+δ)=qα+β+2δ=pa+2δ=pap=2δδ=ap2αβ+(α+β)δ+δ2=qbaδ+δ2bq=aδδ2bq=a(ap2)(ap2)2bq=(ap2)(aap2)=(ap2)(a+p2)4(bq)=a2p2QED
Answered by MM42 last updated on 22/Dec/23
(α+δ)+(β+δ)=−p⇒δ=((a−p)/2)  (α+δ)(β+δ)=αβ+(α+β)δ+δ^2   q=b−aδ+δ^2 =b−a(((a−p)/2))+(((a−p)/2))^2   4q=4b−2a^2 +2ap+a^2 −2ap+p^2   ⇒a^2 −p^2 =4(b−q)  ✓
(α+δ)+(β+δ)=pδ=ap2(α+δ)(β+δ)=αβ+(α+β)δ+δ2q=baδ+δ2=ba(ap2)+(ap2)24q=4b2a2+2ap+a22ap+p2a2p2=4(bq)

Leave a Reply

Your email address will not be published. Required fields are marked *