Question Number 202193 by MATHEMATICSAM last updated on 22/Dec/23
$$\mathrm{If}\:\alpha,\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\:\mathrm{0}\: \\ $$$$\mathrm{and}\:\alpha\:+\:\delta,\:\beta\:+\:\delta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{2}} \:+\:{px}\:+\:{q}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that}\: \\ $$$${a}^{\mathrm{2}} \:−\:{p}^{\mathrm{2}} \:=\:\mathrm{4}\left({b}\:−\:{q}\right). \\ $$
Answered by Rasheed.Sindhi last updated on 22/Dec/23
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\:\mathrm{0}\:;\:\alpha+\beta\:=−{a},\alpha\beta={b}}\\{{x}^{\mathrm{2}} \:+\:{px}\:+\:{q}\:=\:\mathrm{0}\:;\:^{\bigstar} \left(\alpha\:+\:\delta\right)+\left(\beta\:+\:\delta\right)=−{p},\:^{\blacklozenge} \left(\alpha\:+\:\delta\right)\left(\beta\:+\:\delta\right)={q}}\end{cases} \\ $$$$\:^{\bigstar} \:\alpha+\beta+\mathrm{2}\delta=−{p}\Rightarrow−{a}+\mathrm{2}\delta=−{p}\Rightarrow{a}−{p}=\mathrm{2}\delta\Rightarrow\delta=\frac{{a}−{p}}{\mathrm{2}} \\ $$$$\:^{\blacklozenge} \:\alpha\beta+\left(\alpha+\beta\right)\delta+\delta^{\mathrm{2}} ={q}\Rightarrow{b}−{a}\delta+\delta^{\mathrm{2}} \Rightarrow{b}−{q}={a}\delta−\delta^{\mathrm{2}} \\ $$$$\:\:\Rightarrow{b}−{q}={a}\left(\frac{{a}−{p}}{\mathrm{2}}\right)−\left(\frac{{a}−{p}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\:\Rightarrow{b}−{q}=\left(\frac{{a}−{p}}{\mathrm{2}}\right)\left({a}−\frac{{a}−{p}}{\mathrm{2}}\right)=\left(\frac{{a}−{p}}{\mathrm{2}}\right)\left(\frac{{a}+{p}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{4}\left({b}−{q}\right)={a}^{\mathrm{2}} −{p}^{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{QED} \\ $$
Answered by MM42 last updated on 22/Dec/23
$$\left(\alpha+\delta\right)+\left(\beta+\delta\right)=−{p}\Rightarrow\delta=\frac{{a}−{p}}{\mathrm{2}} \\ $$$$\left(\alpha+\delta\right)\left(\beta+\delta\right)=\alpha\beta+\left(\alpha+\beta\right)\delta+\delta^{\mathrm{2}} \\ $$$${q}={b}−{a}\delta+\delta^{\mathrm{2}} ={b}−{a}\left(\frac{{a}−{p}}{\mathrm{2}}\right)+\left(\frac{{a}−{p}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{q}=\mathrm{4}{b}−\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{ap}+{a}^{\mathrm{2}} −\mathrm{2}{ap}+{p}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{4}\left({b}−{q}\right)\:\:\checkmark \\ $$$$ \\ $$