Menu Close

If-log-12-18-A-and-log-24-54-B-then-prove-that-AB-5-A-B-1-




Question Number 202172 by MATHEMATICSAM last updated on 22/Dec/23
If log_(12) 18 = A and log_(24) 54 = B then prove  that AB + 5(A − B) = 1.
Iflog1218=Aandlog2454=BthenprovethatAB+5(AB)=1.
Answered by Rasheed.Sindhi last updated on 22/Dec/23
12^A =18 & 24^B =54  (2^2 .3)^A =18 & (2^3 .3)^B =54  2^(2A) .3^A =2.3^2  & 2^(3B) .3^B =2.3^3   ((2^(2A) .3^A )/(2^(3B) .3^B ))=((2.3^2 )/(2.3^3 ))=3^(−1)   2^(2A−3B) .3^(A−B) =2^0 .3^(−1)   2A−3B=0 ∧   A−B=−1(⇒A=B−1)  2(B−1)−3B=0  B=−2⇒A=−2−1=−3          AB + 5(A − B) = 1  ⇒AB + 5A − 5B−25+25=1       A(B+5)−5(B+5)+25=1       (A−5)(B+5)+25=1       (−3−5)(−2+5)+25=1        (−8)(3)+25=1                     1=1                QED
12A=18&24B=54(22.3)A=18&(23.3)B=5422A.3A=2.32&23B.3B=2.3322A.3A23B.3B=2.322.33=3122A3B.3AB=20.312A3B=0AB=1(A=B1)2(B1)3B=0B=2A=21=3AB+5(AB)=1AB+5A5B25+25=1A(B+5)5(B+5)+25=1(A5)(B+5)+25=1(35)(2+5)+25=1(8)(3)+25=11=1QED

Leave a Reply

Your email address will not be published. Required fields are marked *