Question Number 202212 by Calculusboy last updated on 22/Dec/23
Commented by BOYQOBILOV last updated on 23/Dec/23
$$ \\ $$
Answered by shunmisaki007 last updated on 23/Dec/23
$$\:\:\:{I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx} \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx}+\underset{\frac{\pi}{\mathrm{2}}} {\overset{\pi} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx} \\ $$$$\mathrm{Consider}\:\underset{\frac{\pi}{\mathrm{2}}} {\overset{\pi} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx}. \\ $$$$\Rightarrow\:\mathrm{Let}\:{u}=\pi−{x},\:{du}=−{dx} \\ $$$$\Rightarrow\:\underset{\frac{\pi}{\mathrm{2}}} {\overset{\pi} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx} \\ $$$$\:\:\:\:\:\:=−\underset{\frac{\pi}{\mathrm{2}}} {\overset{\mathrm{0}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left(\pi−{u}\right)\right)^{\mathrm{tan}\left(\pi−{u}\right)} }{du}\: \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({u}\right)\right)^{−\mathrm{tan}\left({u}\right)} }{du} \\ $$$$\Rightarrow{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx}+\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{dx} \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }+\frac{\mathrm{1}}{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{−\mathrm{tan}\left({x}\right)} }{dx} \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} +\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} }{\mathrm{1}+\left(\mathrm{sin}\left({x}\right)\right)^{\mathrm{tan}\left({x}\right)} +\left(\mathrm{sin}\left({x}\right)\right)^{−\mathrm{tan}\left({x}\right)} +\mathrm{1}}{dx} \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{dx} \\ $$$$\therefore\:{I}=\frac{\pi}{\mathrm{2}}\:\:\:\bigstar \\ $$
Commented by Calculusboy last updated on 23/Dec/23
$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$