Menu Close

Find-1-2-1-3-2-16-1-4-2-4-3-4-8-




Question Number 202324 by hardmath last updated on 24/Dec/23
Find:   (((1/2) + 1 + (3/2) + ... + 16)/((1/4) + (2/4) + (3/4) + ... + 8))
$$\mathrm{Find}:\:\:\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:…\:+\:\mathrm{16}}{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:…\:+\:\mathrm{8}} \\ $$
Answered by MATHEMATICSAM last updated on 24/Dec/23
(((1/2) + 1 + (3/2) + .... + 16)/((1/4) + (2/4) + (3/4) + .... + 8))  = (((1/2) + (2/2) + (3/2) + (4/2) + .... + ((32)/2))/((1/4) + (2/4) + (3/4) + (4/4) + .... + ((32)/4)))  = (((1/2)[1 + 2 + 3 + 4 + .... + 32])/((1/4)[1 + 2 + 3 + 4 + .... + 32]))  = (1/2) ร— 4  = 2
$$\frac{\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:….\:+\:\mathrm{16}}{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:….\:+\:\mathrm{8}} \\ $$$$=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{2}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:\frac{\mathrm{4}}{\mathrm{2}}\:+\:….\:+\:\frac{\mathrm{32}}{\mathrm{2}}}{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{4}}{\mathrm{4}}\:+\:….\:+\:\frac{\mathrm{32}}{\mathrm{4}}} \\ $$$$=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:….\:+\:\mathrm{32}\right]}{\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:….\:+\:\mathrm{32}\right]} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:ร—\:\mathrm{4} \\ $$$$=\:\mathrm{2}\: \\ $$
Commented by hardmath last updated on 24/Dec/23
thankyou dear professor/
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor}/ \\ $$
Answered by Rasheed.Sindhi last updated on 25/Dec/23
 (((1/2) + 1 + (3/2) + ... + 16)/((1/4) + (2/4) + (3/4) + ... + 8))  In order to kill the denominators  multiply numerator & denominator by 4   =((4((1/2) + 1 + (3/2) + ... + 16))/(4((1/4) + (2/4) + (3/4) + ... + 8)))  =((2(1+2+3+...+32))/((1+2+3+...+32)))=2
$$\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:…\:+\:\mathrm{16}}{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:…\:+\:\mathrm{8}} \\ $$$${In}\:{order}\:{to}\:{kill}\:{the}\:{denominators} \\ $$$${multiply}\:{numerator}\:\&\:{denominator}\:{by}\:\mathrm{4} \\ $$$$\:=\frac{\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:+\:…\:+\:\mathrm{16}\right)}{\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{2}}{\mathrm{4}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:…\:+\:\mathrm{8}\right)} \\ $$$$=\frac{\mathrm{2}\cancel{\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{32}\right)}}{\cancel{\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{32}\right)}}=\mathrm{2} \\ $$
Commented by MathematicalUser2357 last updated on 26/Dec/23
denominators isnโ€ฒt humans
$$\mathrm{denominators}\:\mathrm{isn}'\mathrm{t}\:\mathrm{humans} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Dec/23
๐Ÿ˜€
๐Ÿ˜€

Leave a Reply

Your email address will not be published. Required fields are marked *