Menu Close

Find-the-2023rd-term-in-the-sequence-2-3-5-6-7-8-10-11-12-13-14-15-17-18-obtained-by-subtracting-integer-squares-from-natural-numbers-




Question Number 202306 by hardmath last updated on 24/Dec/23
  Find the 2023rd term in the sequence 2,3,5,6,7,8,10,11,12,13,14,15,17,18,... obtained by subtracting integer squares from natural numbers.
Find the 2023rd term in the sequence 2,3,5,6,7,8,10,11,12,13,14,15,17,18,… obtained by subtracting integer squares from natural numbers.
Answered by AST last updated on 24/Dec/23
1,2,3,...,2023 contains 44 squares  ⇒2023 is the (2023−44=1979)th term  2023−1979th term  2023+44−2022nd term; since 45^2 =2025  ⇒2023rd term=2023+45=2068
1,2,3,,2023contains44squares2023isthe(202344=1979)thterm20231979thterm2023+442022ndterm;since452=20252023rdterm=2023+45=2068
Commented by hardmath last updated on 24/Dec/23
thank you dear professor
thankyoudearprofessor
Answered by mr W last updated on 24/Dec/23
1,2,3,4,5,...,n  1^2 ,2^2 ,3^2 ,...,k^2  with k^2 <n, i.e. k=⌊(√n)⌋  m=n−k=n−⌊(√n)⌋  that means the m^(th)  term is n.  ⌊(√n)⌋≤(√n)  m=n−⌊(√n)⌋≥n−(√n)  n−(√n)−m≤0  ⇒(√n)≤((1+(√(1+4m)))/2)   ⇒n≤((((√(4m+1))+1)^2 )/4)  i.e. the m^(th)  term is  a_m =⌊((((√(4m+1))+1)^2 )/4)⌋  examples:  m=2023:      a_(2023) =⌊((((√(4×2023+1))+1)^2 )/4)⌋=2068  m=2025:      a_(2025) =⌊((((√(4×2025+1))+1)^2 )/4)⌋=2070  m=1000:     a_(1000) =⌊((((√(4×1000+1))+1)^2 )/4)⌋=1032  m=3000:     a_(3000) =⌊((((√(4×3000+1))+1)^2 )/4)⌋=3055
1,2,3,4,5,,n12,22,32,,k2withk2<n,i.e.k=nm=nk=nnthatmeansthemthtermisn.nnm=nnnnnnm0n1+1+4m2n(4m+1+1)24i.e.themthtermisam=(4m+1+1)24examples:m=2023:a2023=(4×2023+1+1)24=2068m=2025:a2025=(4×2025+1+1)24=2070m=1000:a1000=(4×1000+1+1)24=1032m=3000:a3000=(4×3000+1+1)24=3055
Commented by hardmath last updated on 24/Dec/23
perfect solution tahnkyou dear professor
perfectsolutiontahnkyoudearprofessor

Leave a Reply

Your email address will not be published. Required fields are marked *