Menu Close

If-a-1-1-and-a-1-a-2-a-n-n-2-Find-a-2-a-13-




Question Number 202303 by hardmath last updated on 24/Dec/23
If   a_1  = 1   and   a_1  ∙ a_2  ∙ ... ∙ a_n  = n^2   Find:   a_2  + a_(13)  = ?
$$\mathrm{If}\:\:\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{1}\:\:\:\mathrm{and}\:\:\:\mathrm{a}_{\mathrm{1}} \:\centerdot\:\mathrm{a}_{\mathrm{2}} \:\centerdot\:…\:\centerdot\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{n}^{\mathrm{2}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{a}_{\mathrm{2}} \:+\:\mathrm{a}_{\mathrm{13}} \:=\:? \\ $$
Answered by MATHEMATICSAM last updated on 24/Dec/23
a_1  ∙ a_2  ∙ .... ∙ a_n  = n^2   ∴ a_1  × a_2  × a_3  × .... × a_(13)  =  13^2  = 169  ⇒ a_(13)  = ((169)/(a_1  × a_2  × a_3  × ..... × a_(12) )) = ((169)/(144))  a_1  × a_2  = 2^2  = 4  ⇒ a_2  = 4 [∵ a_1  = 1]  a_2  + a_(13)  = 4 + ((169)/(144)) = ((745)/(144))
$${a}_{\mathrm{1}} \:\centerdot\:{a}_{\mathrm{2}} \:\centerdot\:….\:\centerdot\:{a}_{{n}} \:=\:{n}^{\mathrm{2}} \\ $$$$\therefore\:{a}_{\mathrm{1}} \:×\:{a}_{\mathrm{2}} \:×\:{a}_{\mathrm{3}} \:×\:….\:×\:{a}_{\mathrm{13}} \:=\:\:\mathrm{13}^{\mathrm{2}} \:=\:\mathrm{169} \\ $$$$\Rightarrow\:{a}_{\mathrm{13}} \:=\:\frac{\mathrm{169}}{{a}_{\mathrm{1}} \:×\:{a}_{\mathrm{2}} \:×\:{a}_{\mathrm{3}} \:×\:…..\:×\:{a}_{\mathrm{12}} }\:=\:\frac{\mathrm{169}}{\mathrm{144}} \\ $$$${a}_{\mathrm{1}} \:×\:{a}_{\mathrm{2}} \:=\:\mathrm{2}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\Rightarrow\:{a}_{\mathrm{2}} \:=\:\mathrm{4}\:\left[\because\:{a}_{\mathrm{1}} \:=\:\mathrm{1}\right] \\ $$$${a}_{\mathrm{2}} \:+\:{a}_{\mathrm{13}} \:=\:\mathrm{4}\:+\:\frac{\mathrm{169}}{\mathrm{144}}\:=\:\frac{\mathrm{745}}{\mathrm{144}} \\ $$
Commented by hardmath last updated on 24/Dec/23
thankyou dear ser
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{ser} \\ $$
Answered by mr W last updated on 24/Dec/23
a_1 a_2 ...a_(n−1) a_n =n^2   a_1 a_2 ...a_(n−1) =(n−1)^2   ⇒a_n =((n/(n−1)))^2   a_2 +a_(13) =((2/1))^2 +(((13)/(12)))^2 =((745)/(144))
$${a}_{\mathrm{1}} {a}_{\mathrm{2}} …{a}_{{n}−\mathrm{1}} {a}_{{n}} ={n}^{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} {a}_{\mathrm{2}} …{a}_{{n}−\mathrm{1}} =\left({n}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{n}} =\left(\frac{{n}}{{n}−\mathrm{1}}\right)^{\mathrm{2}} \\ $$$${a}_{\mathrm{2}} +{a}_{\mathrm{13}} =\left(\frac{\mathrm{2}}{\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{13}}{\mathrm{12}}\right)^{\mathrm{2}} =\frac{\mathrm{745}}{\mathrm{144}} \\ $$
Commented by hardmath last updated on 24/Dec/23
thankyou dear professor cool
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{cool} \\ $$
Answered by 1990mbodji last updated on 24/Dec/23
    On suppose que a_1 = 1  et  a_1 .a_2 ...a_n  = n^2 .  Trouvons la valeur de a_2  + a_(13) .    a_1 a_2  = 4 ⇒ a_2  = 4   a_1 a_2 a_3  = 9 ⇒ a_3  = (9/4)    Par ite^� ration  : a_(13)  = ((169)/(144))    Donc a_2  + a_(13)  = 4+((169)/(144))  ⇒ a_2  + a_(13)  = ((745)/(144))
$$ \\ $$$$\:\:{On}\:{suppose}\:{que}\:{a}_{\mathrm{1}} =\:\mathrm{1}\:\:{et}\:\:{a}_{\mathrm{1}} .{a}_{\mathrm{2}} …{a}_{{n}} \:=\:{n}^{\mathrm{2}} . \\ $$$${Trouvons}\:{la}\:{valeur}\:{de}\:{a}_{\mathrm{2}} \:+\:{a}_{\mathrm{13}} . \\ $$$$\:\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} \:=\:\mathrm{4}\:\Rightarrow\:{a}_{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} \:=\:\mathrm{9}\:\Rightarrow\:{a}_{\mathrm{3}} \:=\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\:\:{Par}\:{it}\acute {{e}ration}\:\::\:{a}_{\mathrm{13}} \:=\:\frac{\mathrm{169}}{\mathrm{144}} \\ $$$$\:\:{Donc}\:{a}_{\mathrm{2}} \:+\:{a}_{\mathrm{13}} \:=\:\mathrm{4}+\frac{\mathrm{169}}{\mathrm{144}}\:\:\Rightarrow\:{a}_{\mathrm{2}} \:+\:{a}_{\mathrm{13}} \:=\:\frac{\mathrm{745}}{\mathrm{144}} \\ $$
Commented by hardmath last updated on 24/Dec/23
thankyou dear ser
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *