Menu Close

If-a-1-1-and-a-1-a-2-a-n-n-2-Find-a-2-a-13-




Question Number 202303 by hardmath last updated on 24/Dec/23
If   a_1  = 1   and   a_1  ∙ a_2  ∙ ... ∙ a_n  = n^2   Find:   a_2  + a_(13)  = ?
Ifa1=1anda1a2an=n2Find:a2+a13=?
Answered by MATHEMATICSAM last updated on 24/Dec/23
a_1  ∙ a_2  ∙ .... ∙ a_n  = n^2   ∴ a_1  × a_2  × a_3  × .... × a_(13)  =  13^2  = 169  ⇒ a_(13)  = ((169)/(a_1  × a_2  × a_3  × ..... × a_(12) )) = ((169)/(144))  a_1  × a_2  = 2^2  = 4  ⇒ a_2  = 4 [∵ a_1  = 1]  a_2  + a_(13)  = 4 + ((169)/(144)) = ((745)/(144))
a1a2.an=n2a1×a2×a3×.×a13=132=169a13=169a1×a2×a3×..×a12=169144a1×a2=22=4a2=4[a1=1]a2+a13=4+169144=745144
Commented by hardmath last updated on 24/Dec/23
thankyou dear ser
thankyoudearser
Answered by mr W last updated on 24/Dec/23
a_1 a_2 ...a_(n−1) a_n =n^2   a_1 a_2 ...a_(n−1) =(n−1)^2   ⇒a_n =((n/(n−1)))^2   a_2 +a_(13) =((2/1))^2 +(((13)/(12)))^2 =((745)/(144))
a1a2an1an=n2a1a2an1=(n1)2an=(nn1)2a2+a13=(21)2+(1312)2=745144
Commented by hardmath last updated on 24/Dec/23
thankyou dear professor cool
thankyoudearprofessorcool
Answered by 1990mbodji last updated on 24/Dec/23
    On suppose que a_1 = 1  et  a_1 .a_2 ...a_n  = n^2 .  Trouvons la valeur de a_2  + a_(13) .    a_1 a_2  = 4 ⇒ a_2  = 4   a_1 a_2 a_3  = 9 ⇒ a_3  = (9/4)    Par ite^� ration  : a_(13)  = ((169)/(144))    Donc a_2  + a_(13)  = 4+((169)/(144))  ⇒ a_2  + a_(13)  = ((745)/(144))
Onsupposequea1=1eta1.a2an=n2.Trouvonslavaleurdea2+a13.a1a2=4a2=4a1a2a3=9a3=94Pariteration´:a13=169144Donca2+a13=4+169144a2+a13=745144
Commented by hardmath last updated on 24/Dec/23
thankyou dear ser
thankyoudearser

Leave a Reply

Your email address will not be published. Required fields are marked *