Menu Close

Let-a-b-c-R-a-b-c-3-prove-the-following-inequality-2a-3-2-b-2b-3-2-c-2c-3-2-a-a-2-b-2-a-b-b-2-c-2-b-c-c-2-a-2-c-a-




Question Number 202348 by York12 last updated on 24/Dec/23
  Let a,b,c  ∈R^+  , a+b+c=3 prove the following inequality  (((2a−3)^2 )/b)+(((2b−3)^2 )/c)+(((2c−3)^2 )/a)≥((a^2 +b^2 )/(a+b))+((b^2 +c^2 )/(b+c))+((c^2 +a^2 )/(c+a))
Leta,b,cR+,a+b+c=3provethefollowinginequality(2a3)2b+(2b3)2c+(2c3)2aa2+b2a+b+b2+c2b+c+c2+a2c+a
Answered by mrdiane last updated on 25/Dec/23
  on a 0(a+b+c)^2 =a^2 +b^2 +2(ab+ac+bc comme a,b et >0donc  (a+b+c)^2 ≥a^2 +b^2  or b≤a+b  donc  on a  { (((a+b+c)^2 ≥a^2 +b^2 (1))),(((1/b)≥(1/(a+b)) (2))) :}  (1)×(2) donne (((a+b+c)^2 )/b)≥ ((a^2 +b^2 )/(a+b))⇔(((a+a−3)^2 )/b)≥((a^2 +b^2 )/(a+b))  pae annalogie on a  { (((((2a−3)^2 )/b)≥((a^2 +b^2 )/(a+b)) (3))),(((((2b−3)^2 )/c)≥((b^2 +c^2 )/(b+c))  (4))),(((((2c−3)^2 )/a)≥((c^2 +a^2 )/(a+c)) (5))) :}  (3)+(4)+(5) donne (((2a−3)^2 )/b)+(((2b−3))/c)+(((2c−3))/a)≥((a^2 +b^2 )/(a+b))+((b^2 +c^2 )/(b+c))+((c^2 +a^2 )/(c+a))
ona0(a+b+c)2=a2+b2+2(ab+ac+bccommea,bet>0donc(a+b+c)2a2+b2orba+bdoncona{(a+b+c)2a2+b2(1)1b1a+b(2)(1)×(2)donne(a+b+c)2ba2+b2a+b(a+a3)2ba2+b2a+bpaeannalogieona{(2a3)2ba2+b2a+b(3)(2b3)2cb2+c2b+c(4)(2c3)2ac2+a2a+c(5)(3)+(4)+(5)donne(2a3)2b+(2b3)c+(2c3)aa2+b2a+b+b2+c2b+c+c2+a2c+a
Commented by York12 last updated on 25/Dec/23
  Merci monsieur, mais je ne comprends pas la première ligne
Merci monsieur, mais je ne comprends pas la première ligne
Commented by York12 last updated on 25/Dec/23
(a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ac)  ≠a^2 +b^2 +2(ab+bc+ac)  b≥b ⇎ b≥a+b → (because eauality holds when a=0 but a>0 ⇒The equality does not hold)  (a+b+c)^2 ≥a^2 +b^2  →(I do not see the equality case)  (((a+b+c)^2 )/b)≥ ((a^2 +b^2 )/(a+b))⇔(((a+a−3)^2 )/b)≥((a^2 +b^2 )/(a+b)) →(Why)
(a+b+c)2=a2+b2+c2+2(ab+bc+ac)a2+b2+2(ab+bc+ac)bbba+b(becauseeaualityholdswhena=0buta>0Theequalitydoesnothold)(a+b+c)2a2+b2(Idonotseetheequalitycase)(a+b+c)2ba2+b2a+b(a+a3)2ba2+b2a+b(Why)

Leave a Reply

Your email address will not be published. Required fields are marked *