Menu Close

psin-con-2-a-pcos-sin-2-b-p-0-0-pi-2-prove-p-a-2-b-2-3-2-ab-




Question Number 202295 by liuxinnan last updated on 24/Dec/23
psinθcon^2 θ=a  pcosθsin^2 θ=b  p≠0    θ∈(0 ,(π/2))  prove p=(((a^2 +b^2 )^(3/2) )/(ab))
psinθcon2θ=apcosθsin2θ=bp0θ(0,π2)provep=(a2+b2)32ab
Answered by 1990mbodji last updated on 24/Dec/23
     Exercice :     p sinθ cos^2 θ = a    et    p cosθ sin^2  θ = b ou^�  θ∈]0;(π/2)[.    Montrons que  p = (((a^2 +b^2 )^(3/2) )/(ab)) .     ab = p^2 sin^3 θ cos^3 θ   et  a^2 +b^2  = p^2 sin^2 θ cos^2 θ (cos^2 θ+sin^2 θ)    ⇒ abp = (p sinθ cosθ)^3   et  a^2 +b^2  = (p sinθ cosθ)^2      ⇒ p sinθ cosθ = (abp)^(1/3)    et   p sinθ cosθ = (a^2 +b^2 )^(1/2)      ⇒ abp = (a^2 +b^2 )^(3/2)   ⇒ p = (((a^2 +b^2 )^(3/2) )/(ab)) .
Exercice:psinθcos2θ=aetpcosθsin2θ=bou`θ]0;π2[.Montronsquep=(a2+b2)32ab.ab=p2sin3θcos3θeta2+b2=p2sin2θcos2θ(cos2θ+sin2θ)abp=(psinθcosθ)3eta2+b2=(psinθcosθ)2psinθcosθ=(abp)13etpsinθcosθ=(a2+b2)12abp=(a2+b2)32p=(a2+b2)32ab.
Commented by MathematicalUser2357 last updated on 26/Dec/23
no french
nofrench

Leave a Reply

Your email address will not be published. Required fields are marked *