Menu Close

P-rove-that-dx-b-4-2ax-2-c-tan-1-2-a-x-c-b-4-2-a-c-b-4-C-if-a-c-b-4-gt-0-




Question Number 202388 by Calculusboy last updated on 25/Dec/23
  P rove that:    ∫ (dx/(b^4 +2ax^2 +c))=((tan^(−1) ((((√2)(√a)x)/( (√(c+b^4 ))))))/( (√2)(√a)(√(c+b^4 ))))+C  if  a∙(c+b^4 )>0
$$\:\:\boldsymbol{{P}}\:\boldsymbol{{rove}}\:\boldsymbol{{that}}:\:\:\:\:\int\:\frac{\boldsymbol{{dx}}}{\boldsymbol{{b}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{c}}}=\frac{\boldsymbol{{tan}}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\boldsymbol{{x}}}{\:\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}\right)}{\:\sqrt{\mathrm{2}}\sqrt{\boldsymbol{{a}}}\sqrt{\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} }}+\boldsymbol{{C}} \\ $$$$\boldsymbol{{if}}\:\:\boldsymbol{{a}}\centerdot\left(\boldsymbol{{c}}+\boldsymbol{{b}}^{\mathrm{4}} \right)>\mathrm{0} \\ $$$$ \\ $$
Answered by witcher3 last updated on 26/Dec/23
∫(dx/(b^4 +c+2ax^2 ))=∫(dx/(2a(x^2 +((b^4 +c)/(2a)))));β^2 =((b^4 +c)/(2a))>0  =(1/(2a))∫(dx/(x^2 +β^2 ))=(1/(2aβ))tan^(−1) ((x/β))+k;k∈R  =(1/(2a(√((b^4 +c)/(2a)))))tan^(−1) (x(√((2a)/(b^4 +c))))+k  =(1/( (√2).(√a).(√(b^4 +c)))).tan^(−1) (((x(√2).(√a))/( (√(c+b^4 )))))+k
$$\int\frac{\mathrm{dx}}{\mathrm{b}^{\mathrm{4}} +\mathrm{c}+\mathrm{2ax}^{\mathrm{2}} }=\int\frac{\mathrm{dx}}{\mathrm{2a}\left(\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{b}^{\mathrm{4}} +\mathrm{c}}{\mathrm{2a}}\right)};\beta^{\mathrm{2}} =\frac{\mathrm{b}^{\mathrm{4}} +\mathrm{c}}{\mathrm{2a}}>\mathrm{0} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2a}}\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} +\beta^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2a}\beta}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\beta}\right)+\mathrm{k};\mathrm{k}\in\mathbb{R} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2a}\sqrt{\frac{\mathrm{b}^{\mathrm{4}} +\mathrm{c}}{\mathrm{2a}}}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\sqrt{\frac{\mathrm{2a}}{\mathrm{b}^{\mathrm{4}} +\mathrm{c}}}\right)+\mathrm{k} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}.\sqrt{\mathrm{a}}.\sqrt{\mathrm{b}^{\mathrm{4}} +\mathrm{c}}}.\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}\sqrt{\mathrm{2}}.\sqrt{\mathrm{a}}}{\:\sqrt{\mathrm{c}+\mathrm{b}^{\mathrm{4}} }}\right)+\mathrm{k} \\ $$
Commented by Calculusboy last updated on 26/Dec/23
nice solution
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *