Question Number 202352 by cortano12 last updated on 25/Dec/23
Commented by cortano12 last updated on 26/Dec/23
Commented by cortano12 last updated on 26/Dec/23
$$\mathrm{it}\:\mathrm{is}\:\mathrm{correct}\:? \\ $$
Commented by mr W last updated on 25/Dec/23
$$\mathrm{1979}+{T}\left(\mathrm{1979}\right)+{T}\left({T}\left(\mathrm{1979}\right)\right) \\ $$$$=\mathrm{1979}+\mathrm{26}+\mathrm{8} \\ $$$$=\mathrm{2013} \\ $$$$ \\ $$$$\mathrm{1985}+{T}\left(\mathrm{1985}\right)+{T}\left({T}\left(\mathrm{1985}\right)\right) \\ $$$$=\mathrm{1985}+\mathrm{23}+\mathrm{5} \\ $$$$=\mathrm{2013} \\ $$$$ \\ $$$$\mathrm{1991}+{T}\left(\mathrm{1991}\right)+{T}\left({T}\left(\mathrm{1991}\right)\right) \\ $$$$=\mathrm{1991}+\mathrm{20}+\mathrm{2} \\ $$$$=\mathrm{2013} \\ $$$$ \\ $$$$\mathrm{2003}+{T}\left(\mathrm{2003}\right)+{T}\left({T}\left(\mathrm{2003}\right)\right) \\ $$$$=\mathrm{2003}+\mathrm{5}+\mathrm{5} \\ $$$$=\mathrm{2013} \\ $$
Commented by cortano12 last updated on 25/Dec/23
$$\mathrm{do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{any}\:\mathrm{formula}? \\ $$
Commented by mr W last updated on 25/Dec/23
$${i}\:{don}'{t}\:{think}\:{we}\:{can}\:{solve}\:{this}\:{using} \\ $$$${a}\:{formula}.\:{we}\:{can}\:{only}\:{estimate}\:{in} \\ $$$${which}\:{range}\:{n}\:{should}\:{lie}\:{and}\:{then} \\ $$$${check}\:{the}\:{numbers}\:{in}\:{this}\:{range} \\ $$$${one}\:{by}\:{one}. \\ $$
Commented by mr W last updated on 25/Dec/23
Commented by mr W last updated on 26/Dec/23
$${all}\:{said}\:{is}\:{correct},\:{but}\:{it}\:{doesn}'{t}\:{help} \\ $$$${so}\:{much}.\:{you}\:{can}'{t}\:{calculate}\:{S}\left({N}\right) \\ $$$${with}\:{a}\:{formula}. \\ $$
Commented by MathematicalUser2357 last updated on 26/Dec/23
$$\mathrm{what}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{grapher}? \\ $$
Commented by mr W last updated on 26/Dec/23
$${what}\:{do}\:{you}\:{want}\:{to}\:{know}\:{exactly}? \\ $$$${what}\:{do}\:{you}\:{mean}\:{with}\:“{the}\:{limit}''? \\ $$